
Integrating Symmetry into Differentiable Planning
Linfeng Zhao†, Xupeng Zhu†∗, Lingzhi Kong†∗, Robin Walters† and Lawson L.S. Wong†

†Khoury College of Computer Sciences
Northeastern University

Email: zhao.linf@northeastern.edu
∗Equal Contribution

I. INTRODUCTION

Model-based planning usually struggles in complex prob-
lems, and planning in more structured and abstract space
is a major solution [1, 2, 3, 4]. Symmetry is ubiquitous in
learning and decision-making problems and can effectively
reduce search space for planning. However, existing planning
algorithms using symmetry assumes perfect dynamics knowl-
edge, needs to explicitly build equivalence classes, or does not
consider problem structure [5, 4, 6, 7, 8]. For example, if we
use A* on path planning, we cannot specify visually obvious
rotation symmetry in Figure 1, and need to detect in manually
from the provided dynamics model. This would be even more
challenging to detect in differentiable planning.

Nevertheless, symmetry in model-free deep reinforcement
learning (RL) has been studied recently [9, 10]. However, it
can only handle pixel-level “element-wise” symmetry, such
as flipping or rotating state and action together. However, a
critical benefit of model-free RL agents that enables great
asymptotic performance is its end-to-end differentiability. This
motivates us to combine the spirit of both: is it possible to
design an end-to-end differentiable planning algorithm that
makes use of symmetry in environments?

In this work, we propose to (1) avoid explicitly building
equivalence classes for symmetric states while (2) realize
planning in an end-to-end differentiable manner. We are mo-
tivated by work in the equivariant network and geometric
deep learning community [11, 12, 13, 14, 15, 16], which
treat an RGB image as a mapping Z2 → R3 and apply
equivariant convolutions between feature maps. It satisfies
our desiderata: equivariant networks on images do not need
to explicitly consider “symmetric pixels” while guarantee
symmetry properties. Based on the intuition, we propose a
framework, Symmetric Planning (SymPlan), to understand a
straightforward but general problem, path planning, as op-
erating like images, called steerable feature fields [14, 16].
We focus on 2D grid and prove that value iteration (VI) for
2D path planning is equivariant under the isometries of Z2:
translations, rotations, and reflections, and further show that VI
here is a special form of steerable convolution network [14].
This provides us a foundation to equip Value Iteration Network
(VIN, [17]) with steerable convolution. We implement the
equivariant steerable version of VIN, named SymVIN, and use
a variant, GPPN, to build SymGPPN. Both SymPlan methods

Figure 1: The path planning problem has symmetry, so we study how
to exploit its symmetry in (differentiable) planning. Red dots are goal.
The optimal actions A = SymPlan(M) (bottom row) for the maps
M (top row) are guaranteed to be equivariant SymPlan(g.M) =
g.SymPlan(M) under ⟲ rotations for (2D) path planning. For
example, the action in the NW corner of A is the same as the action
in the SW corner of g.A, after also rotating the arrow ⟲ 90◦.

achieve great improvement on training efficiency and general-
ization performance to unseen random maps, which showcases
the advantage of exploiting symmetry from environments for
planning.

Our contributions are as follows:
• Understand the inherent symmetry in path planning prob-

lems (on 2D grids), formulate value iteration in as steerable
convolution network, and connect both to incorporate sym-
metry into VI.

• Based on the formulation, implement equivariant steerable
version of VIN and GPPN.

• Show significant improvement in training and generalization
on 2D navigation and manipulation.
Our full version is available at https://arxiv.org/abs/2206.

03674.

II. SYMMETRIC PLANNING IN PRACTICE

In this section, we discuss how to achieve Symmetric Plan-
ning on 2D grids with E(2)-steerable CNNs [16]. We focus on
implementing symmetric version of value iteration, SymVIN,

https://arxiv.org/abs/2206.03674
https://arxiv.org/abs/2206.03674

and generalize the methodology to make a symmetric version
of a popular follow-up of VIN, GPPN [18].

Steerable value iteration. We have showed that, value iter-
ation for path planning problems on Z2 consists of equivariant
maps between steerable feature fields. It can be implemented
as an equivariant steerable CNN, with recursively applying
two alternating (equivariant) layers:

Qa
k(s) = Ra

m(s) + γ × [P a
θ ⋆ Vk] (s), Vk+1(s) = max

a
Qa

k(s),

(1)
where s ∈ Z2, k ∈ [K] indexes iteration, Vk, Q

a
k, R

a
m are

steerable feature fields over Z2 output by equivariant layers,
P a
θ is a learned kernel in neural network, and +,× are

element-wise operations.
Pipeline. We follow the pipeline in VIN [17]. The com-

mutative diagram for the full pipeline is shown in Figure 2.
The path planning task is given by a m × m spatial binary
obstacle occupancy map and one-hot goal map, represented
as a feature field M : Z2 → {0, 1}2. For the iterative process
Qa

k 7→ Vk 7→ Qa
k+1, the reward field RM is predicted from

map M (by a 1×1 convolution layer) and the value field V0 is
initialized as zeros. The network output is (logits of) planned
actions for all locations1, represented as A : Z2 → R|A|,
predicted from the final Q-value field QK (by another 1 × 1
convolution layer). The number of iterations K and the con-
volutional kernel size F of P a

θ are set based on map size M ,
and the spatial dimension m×m is kept consistent.

Building Symmetric Value Iteration Networks. Given
the pipeline of VIN fully on steerable feature fields, we
are ready to build equivariant version with E(2)-steerable
CNNs [16]. The idea is to replace every Conv2d with a
steerable convolution layer between steerable feature fields,
and associate the fields with proper fiber representations ρ(h).

VINs use ordinary CNNs and can choose the size of
intermediate feature maps. The design choices in steerable
CNNs is the feature fields and fiber representations (or type)
for every layer [14, 16]. The main difference2 in steerable
CNNs is that we also need to tell the network how to transform
every feature field, by specifying fiber representations, as
shown in Figure 2.

Specification of input map and output action. We first
specify fiber representations for the input and output field of
the network: map M and action A. For input occupancy
map and goal M : Z2 → {0, 1}2, it does not D4 to
act on the 2 channels, so we use two copies of trivial
representations ρM = ρtriv ⊕ ρtriv. For action, the final action
output A : Z2 → R|A| is for logits of four actions A =
(north, west, south, east) for every location. If
we use H = C4, it naturally acts on the four actions (ordered
⟲) by cyclically ⟲ permuting the R4 channels. However,
since the D4 group has 8 elements, we need a quotient
representation, see [16].

1Technically, it also includes values or actions for obstacles, since the
network needs to learn to approximate the reward RM (s,∆s) = −∞ with
enough small reward and avoid obstacles.

Specification of intermediate fields: value and reward.
Then, for the intermediate feature fields: Q-values Qk, state
value Vk, and reward Rm, we are free to choose fiber represen-
tations, as well as the width (number of copies). For example,
if we want 2 copies of regular representation of D4, the feature
field has 2 × 8 = 16 channels and the stacked representation
is 16× 16 (by direct-sum).

For the Q-value field Qa
k(s), we use representation ρQ and

its size as CQ. We need at least CA ≥ |A| channels for all
actions of Q(s, a) as in VIN and GPPN, then stacked together
and denoted as Qk ≜

⊕
a Q

a
k with dimension Qk : Z2 →

RCQ∗CA . Therefore, the representation is direct-sum
⊕

ρQ for
CA copies. The reward is implemented similarly as RM ≜⊕

a R
a
M and must have same dimension and representation

to add element-wisely. For state value field, we denote the
choose as fiber representation as ρV and its size CV . It has
size Vk : Z2 → RCV Thus, the steerable kernel is matrix-
valued with dimension Pθ : Z2 → R(CQ∗CA)×CV . In practice,
we found using regular representations for all three works the
best. It can be viewed as "augmented" state and is related to
group convolution.

III. EXPERIMENTS

We experiment VIN, GPPN and our SymPlan methods on
given maps.

Environments and datasets. We demonstrate the idea in
two major robotics tasks: navigation and manipulation. We
focus on the 2D regular grid setting for path planning, as
adopted in prior work [17, 18, 19]. For each task, we consider
using given maps (2D navigation and 2-DOF configuration-
space manipulation). In the latter case, the planner needs to
jointly learn a mapper that converts egocentric panoramic
images (visual navigation) or workspace states (workspace
manipulation) into plannable loss, as in [18, 19]. In both cases,
we randomly generate training, validation and test data of
10K/2K/2K maps for all map sizes, to demonstrate data
efficiency and generalization ability of symmetric planning.
Note that the test maps are unlikely to be symmetric to
the training maps by any transformation from the symmetry
groups G. For all environments, the planning domain is the 2D
regular grid S = Ω = Z2, and the action space is to move in
4 ⟲ directions3: A = (north, west, south, east).

Methods: planner networks. We compare five planner
methods, where two are our SymPlan version of their non-
equivariant counterparts. Our equivariant implementation is
based on Value Iteration Networks (VIN, [17]) and Gated
Path Planning Networks (GPPN, [18]). We implement the
equivariant version of VIN, named SymVIN. For GPPN,
we first obtained a fully convolutional version, named Con-
vGPPN [Redacted for anonymous review], and furthermore
SymGPPN with steerable CNNs. All methods use (equiv-
ariant) convolutions with circular padding in planning in

3Note that the MDP action space A needs to be compatible with the group
action G × A → A. Since the E2CNN package [16] uses counterclockwise
rotations ⟲ as generators for rotation groups Cn, the action space needs to
be counterclockwise ⟲.

Figure 2: Commutative diagram for the full pipeline of SymVIN on steerable feature fields over Z2 (every grid). If rotating
the input map M by πM (g) of any g, the output action A = SymVIN(M) is guaranteed to be transformed by πA(g), i.e. the
entire steerable SymVIN is equivariant under induced representations πM and πA: SymVIN(πM (g)M) = πA(g)SymVIN(M).
We use stacked feature fields to emphasize that SymVIN supports direct-sum of representations beyond scalar-valued.

Figure 3: (Left) A visual navigation environment rendered
from a randomly generated 7 × 7 maze (Middle), where the
hover is the visualization of four views at position (5, 3).
(Right) A 2-joint manipulation task in workspace (topdown)
and configuration space (2 DOFs) in 18× 18 resolution.

0 5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

at
e

model
VIN
SymVIN
GPPN
ConvGPPN
SymGPPN

0 5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

at
e model

VIN
SymVIN
GPPN
ConvGPPN
SymGPPN

Figure 4: Training curves on (Left) 2D navigation with 10K
of 15×15 maps and on (Right) 2DoFs manipulation with 10K
of 18× 18 maps in configuration space. Faded areas indicate
standard error.

configuration spaces for the manipulation tasks, except GPPN
that is not fully convolutional. Chaplot et al. [19] propose
SPT based on Transformers, while integrating symmetry to
Transformers is beyond steerable convolutions, thus we do not
consider it but still adopt some useful setup.

Training and evaluation. We report success rate and
training curves over 3 seeds. The training process (on given
maps) follows [17, 18], where we train 30 epochs with batch
size 32, and use kernel size F = 3 by default. The gradient
clip threshold is set to 5. The default batch size is 32, while
we need to reduce for some GPPN variants, since LSTM
consumes much more memory.

A. Planning on given maps

Environmental setup. In the 2D navigation task, the map
and goal are randomly generated, where the map size is
{15, 28, 50}. In 2-DOF manipulation in configuration space,
we adopt the setting in [19] and train networks to take
as input of configuration space, represented by two joints.

Table I: Averaged test success rate (%).

Method Navigation Manipulation
(10K Data) 15 × 15 28 × 28 50 × 50 18 × 18 36 × 36

VIN 66.97 67.57 57.92 77.82 84.32
SymVIN 98.99 98.14 86.20 99.98 99.36

GPPN 96.36 95.77 91.84 2.62 1.68
ConvGPPN 99.75 99.09 97.21 99.98 99.95
SymGPPN 99.98 99.86 99.49 100.00 99.99

We randomly generate 0 to 5 obstacles in the manipulator
workspace. Then the 2 degree-of-freedom (DOF) configuration
space is constructed from workspace and discretized into 2D
grid with sizes {18, 36}, corresponding to bins of 20◦ and 10◦,
respectively. All methods are trained using the same network
size, where for equivariant versions, we use regular represen-
tations for all layers, which has size |D4| = 8. We keep the
same parameters for all methods, so all equivariant convolution
layers with regular representations will have higher embedding
sizes. Due to memory constraint, we use K = 30 iterations for
2D maze navigation, and K = 27 for manipulation. We use
kernel sizes F = {3, 5, 5} for m = {15, 28, 50} navigation,
and F = {3, 5} for m = {18, 36} manipulation.

Results. We show the averaged test results for both 2D
navigation and C-space manipulation tasks on generalizing to
unseen maps (Table I) and the training curves for all methods
(Figure 4). For VIN series, our SymVIN is much better
than the vanilla VIN in terms of generalization and training
performance in both environments, which learns much faster
and achieves almost perfect asymptotic performance. As for
GPPN, we found the fully convolutional variant ConvGPPN
actually works better than the original one in [18], especially
in learning speed. However, SymVIN does fluctuate in some
runs, which seems to come from initialization and label.
SymGPPN further boosts ConvGPPN and outperforms all
other methods. One exception is GPPN learns poorly in C-
space manipulation. For GPPN, the added circular padding in
the convolution encoder leads to gradient vanishing problem.

REFERENCES

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: an introduction. Adaptive computation and
machine learning series. The MIT Press, Cambridge,
Massachusetts, second edition edition, 2018. ISBN 978-
0-262-03924-6.

[2] Lihong Li, Thomas J. Walsh, and M. Littman. Towards a
Unified Theory of State Abstraction for MDPs. In AI&M,
2006.

[3] Balaraman Ravindran and Andrew G Barto. An algebraic
approach to abstraction in reinforcement learning. PhD
thesis, University of Massachusetts at Amherst, 2004.

[4] Maria Fox and Derek Long. Extending the exploitation
of symmetries in planning. In In Proceedings of AIPS’02,
pages 83–91, 2002.

[5] Maria Fox and Derek Long. The Detection and Exploita-
tion of Symmetry in Planning Problems. In In IJCAI,
pages 956–961. Morgan Kaufmann, 1999.

[6] Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Ex-
ploiting Problem Symmetries in State-Based Planners. In
Twenty-Fifth AAAI Conference on Artificial Intelligence,
August 2011. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI11/paper/view/3732.

[7] Martin Zinkevich and Tucker Balch. Symmetry in
Markov decision processes and its implications for single
agent and multi agent learning. In In Proceedings of
the 18th International Conference on Machine Learning,
pages 632–640. Morgan Kaufmann, 2001.

[8] Shravan Matthur Narayanamurthy and Balaraman Ravin-
dran. On the hardness of finding symmetries in Markov
decision processes. In Proceedings of the 25th inter-
national conference on Machine learning - ICML ’08,
pages 688–695, Helsinki, Finland, 2008. ACM Press.
ISBN 978-1-60558-205-4. doi: 10/bkswc2. URL http:
//portal.acm.org/citation.cfm?doid=1390156.1390243.

[9] Elise van der Pol, Daniel E. Worrall, Herke van Hoof,
Frans A. Oliehoek, and Max Welling. MDP Homo-
morphic Networks: Group Symmetries in Reinforcement
Learning. arXiv:2006.16908 [cs, stat], June 2020. URL
http://arxiv.org/abs/2006.16908. arXiv: 2006.16908.

[10] Dian Wang, Robin Walters, and Robert Platt.
$\mathrm{SO}(2)$-Equivariant Reinforcement
Learning. September 2021. URL https:
//openreview.net/forum?id=7F9cOhdvfk_.

[11] Michael M Bronstein, Joan Bruna, Taco Cohen, and
Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, 2021.

[12] Taco Cohen, Mario Geiger, and Maurice Weiler. A
General Theory of Equivariant CNNs on Homogeneous
Spaces. arXiv:1811.02017 [cs, stat], January 2020. URL
http://arxiv.org/abs/1811.02017. arXiv: 1811.02017.

[13] Risi Kondor and Shubhendu Trivedi. On the Generaliza-
tion of Equivariance and Convolution in Neural Networks
to the Action of Compact Groups. arXiv:1802.03690 [cs,

stat], November 2018. URL http://arxiv.org/abs/1802.
03690. arXiv: 1802.03690.

[14] Taco S. Cohen and Max Welling. Steerable CNNs.
November 2016. URL https://openreview.net/forum?id=
rJQKYt5ll.

[15] Taco S. Cohen and Max Welling. Group Equivariant
Convolutional Networks. arXiv:1602.07576 [cs, stat],
June 2016. URL http://arxiv.org/abs/1602.07576. arXiv:
1602.07576.

[16] Maurice Weiler and Gabriele Cesa. General $E(2)$-
Equivariant Steerable CNNs. arXiv:1911.08251 [cs,
eess], April 2021. URL http://arxiv.org/abs/1911.08251.
arXiv: 1911.08251.

[17] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. Value Iteration Networks. In Proceed-
ings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, pages 4949–4953, Melbourne,
Australia, August 2017. International Joint Conferences
on Artificial Intelligence Organization. ISBN 978-0-
9992411-0-3. doi: 10/ggjfst. URL https://www.ijcai.org/
proceedings/2017/700.

[18] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric
Xing, and Ruslan Salakhutdinov. Gated Path Planning
Networks. arXiv:1806.06408 [cs, stat], June 2018. URL
http://arxiv.org/abs/1806.06408. arXiv: 1806.06408.

[19] Devendra Singh Chaplot, Deepak Pathak, and Jitendra
Malik. Differentiable Spatial Planning using Transform-
ers. arXiv:2112.01010 [cs], December 2021. URL
http://arxiv.org/abs/2112.01010. arXiv: 2112.01010.

https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3732
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3732
http://portal.acm.org/citation.cfm?doid=1390156.1390243
http://portal.acm.org/citation.cfm?doid=1390156.1390243
http://arxiv.org/abs/2006.16908
https://openreview.net/forum?id=7F9cOhdvfk_
https://openreview.net/forum?id=7F9cOhdvfk_
http://arxiv.org/abs/1811.02017
http://arxiv.org/abs/1802.03690
http://arxiv.org/abs/1802.03690
https://openreview.net/forum?id=rJQKYt5ll
https://openreview.net/forum?id=rJQKYt5ll
http://arxiv.org/abs/1602.07576
http://arxiv.org/abs/1911.08251
https://www.ijcai.org/proceedings/2017/700
https://www.ijcai.org/proceedings/2017/700
http://arxiv.org/abs/1806.06408
http://arxiv.org/abs/2112.01010

	Introduction
	Symmetric Planning in Practice
	Experiments
	Planning on given maps

