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Abstract—Objects we interact with and manipulate often share
similar parts, e.g. handles, that allow us to transfer our actions
flexibly due to their shared functionality. This corresponds
to affordances, i.e. set of action possibilities offered by the
environment [1]. In this work, we propose to learn affordances
associated with implicit models of local shapes shared across
object categories. Our approach takes an expert grasp demon-
stration on a given object, extracts the local geometry, and uses
it as an anchor to align corresponding parts of objects from the
same category. We show that the proposed implicit representation
method can align objects within the same category under random
pose perturbation. In addition, our general approach can align
the local geometry to find grasp poses similar to the one
demonstrated in the reference local shape. Finally, we show that
we can identify the shared local geometry on novel objects from
a different object category for affordance transfer.

I. INTRODUCTION

Predicting grasp affordances is a topic widely studied [2],
[3], [4], [5], [6], as grasping is one of the most widely used
robotic skills. An approach to generate grasp poses is based
on finding category-level dense point correspondences and
using them for grasp generation [7]. Recently, Nerfs [8] and
implicit representations [9], [10] have been used in robotic
manipulation [11] for dense correspondence generation [12],
[13]. However, as these approaches do not allow for transfer
to new categories.

If we find correspondences explicitly with local surface sim-
ilarities, we can transfer grasp poses across object categories
that share parts with similar grasp affordances. A visualisation
of this idea is shown in Figure 1 where, using our method,
we can match the implicit representation learnt from the
handle of a mug object to identify the grasp location on other
objects that have similar parts. Previously, part prototypes
were used to transfer grasps across novel object categories
[14] using a shape similarity score between prototype parts
and observed parts. However, shape similarity score alone
may lead to poor generalization as this approach does not
guarantee parts from same semantic category to match each
other. Instead, in this work, we model shapes with implicit
surface representations using position-based neural networks
and perform shape inference by optimising a latent shape code
[9]. For this optimization, such methods require all objects to
be in canonical reference frames both in training and test time.
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Fig. 1. We learn an implicit representation to model local surfaces aligned
to generate grasp poses, which facilitates identifying similar local surfaces in
novel objects from other categories to transfer grasps.

Aligning objects to the canonical poses is a hard problem,
and often objects will still not completely align [15], [16].
Recently with Nerfs, it has been shown that camera poses
can be estimated by optimising a pose embedding along with
the Nerf reconstruction optimization [17], or by inverting the
Nerf [18]. Similarly to the former one, in this work, we
optimise a pose embedding that can be used to align objects
to a canonical frame. The main contributions of this work can
be summarized as follows:

• A novel pose and scale alignment approach that allows
us to learn implicit representations even when there are
pose variations between the objects up to an extent. This
in turn, allow us to learn compositional implicit repre-
sentations on explicitly provided locations even without
complete surface match and alignment.

• We provide an approach for generalising expert grasp
demonstration provided on a single object from an ob-
ject category to other objects in the same category by
simultaneously learning an implicit representation for the
local surfaces of the objects and aligning them to have
the grasp pose in the origin of the learnt local surface
model.

• Finally, we show that the learned implicit representation
can be used to identify similar local shapes on given a
novel object to recover possible grasp locations.

II. METHOD

Our proposed approach is shown in Figure 2. In this section,
we first describe how shape generation is done and then how
the shape alignment process is integrated.

a) Preliminaries: Signed distance functions (SDFs) are
implicit surface representations that are commonly used in
computer vision to represent shapes of objects. An SDF
evaluates to 0 for the points on the surface of objects, negative
for the points inside the object and positive for the points
outside of the object. For predicting SDF values, DeepSDF [9]



Fig. 2. The two part network architecture: First using an SE3 transformation and a scaling code, we generate an affine transformation matrix to transform
the input positions. Using these positions, the shape generation module predicts SDF values for each given transformed input location.

introduced coordinate-based neural networks. In this network,
a multilayer perceptron (MLP) predicts the SDF value for a
given 3D X = (x; y; z) location and a shape latent code (�).
However, instead of an autoencoder training, DeepSDF used
auto-decoders in which an object code is not produced by
an encoder, but learned along with the MLP with gradient
optimization. Later in Siren [19], the authors similarly used
the autodecoder strategy, but instead of giving shape code to
the network as input, the shape code is given to a hyper-
network [20] to predict part of the MLP’s weights. In our
work, we similarly use hypernetworks along with position-
based MLPs for shape generation.

One commonly used approach for representing high fre-
quency shapes (i.e more complicated shapes) in coordinate-
based MLPs is to use position encodings [21].Position encod-
ings map 3D locations X to higher-dimensional inputs using
the map (X) = [X; 0(X); 1(X); :::; L−1(X)] ∈ R3+6L

where m(X) = [cos(2m�X); sin(2m�X)] ∈ R6. In our
work, we do not always use position encodings, as they require
tuning of extra hyper-parameters.

b) Pose Alignment: SE3 transformations have 6 degree of
freedoms (DOF), therefore ideally they should be represented
with a 6 dimensional SE3 transformation code. Using the Lie
algebra of SE(3) [22], we can map 6 dimensional embeddings
to SE(3) transformations.

For finding the part scaling, we learn a 3-dimensional
scaling embedding C that is then transformed to a (4x4) trans-
formation matrix by diag([C; 1]). Multiplying this matrix with
the SE3 transformation matrix acquired before, we acquire
an affine transformation matrix that we can use for pose and
scale alignment. This affine transformation matrix is used to
transform a given X location into X ′. Optimising � and C
together, which we call pose refinement code, while training
the neural network allows the reconstructed shapes to be well
aligned with each other.

c) Dynamically adapting sampling sphere: For training
the neural network to only learn the local surface given on the
object, we sample points only within the sphere with radius r
and identity pose. The reason for this is to limit the network’s
capacity spent on the surface outside of the targeted one. How-
ever, one problem is that, since the alignment transformation
is optimised at the same time with the network parameters,

some of the points that should be in the sampling sphere are
not inside, since the shapes are not aligned yet. For this reason,
we use the current transformation matrix to sample points that
will be in the unit sphere after the transformation.

d) Grasp Transfer: Since our algorithm can align objects
within the same category, we can define a canonical pose with
respect to the local surface of an object which can then be
transferred to corresponding surfaces in the objects from the
same category after the alignment. Ideally, this pose can be
selected as the identity pose, so that our algorithm learns the
local surface with respect to the pose.

This canonical pose corresponds to a grasp pose in our
algorithm. We first get an expert grasp demonstration on one
object, which we assign as the anchor object, and then we
transform the shape with respect to this given pose. We apply
the same transformation to all objects from the same category;
however, usually the identity pose will not correspond to the
ideal grasp pose for the other objects. For the anchor object,
we fix the pose refinement codes so that other objects align
around the anchor object. In the learnt implicit representation,
the identity pose will correspond to the grasp pose.

For transferring to new objects, we can use the learnt
implicit representation. For an object that has a similar local
surface with the originally trained one, we can pick a several
positions on close-by locations to this similar surface and then
we can optimize a shape code along with pose refinement
codes so that after the optimisation, if the reconstruction error
is lower than a given threshold, we can use the pose refinement
codes for identifying a grasp pose on the novel object.

III. EXPERIMENTS

To evaluate our method, we use the category of cups and
bags from the ShapeNet-Core V2 dataset [23] (note that all
objects in ShapeNet-Core V2 are in canonical poses) and
perform two experiments: Shape alignment and affordance
transfer experiments.

A. Shape Alignment

To evaluate the performance of the shape alignment process,
we create a dataset of mug objects whose poses are varied by
applying random perturbations. For each object in the dataset,
we also have the corresponding non-perturbed mug object. We
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