
Conditional Energy-Based Models for Implicit
Policies: The Gap between Theory and Practice

Duy-Nguyen Ta, Eric Cousineau, Huihua Zhao, and Siyuan Feng
Toyota Research Institute

Cambridge, Massachusetts, USA
Email: eric.cousineau@tri.global

Abstract—We present our findings in the gap between theory
and practice of using conditional energy-based models (EBM)
as an implicit representation for behavior-cloned policies. We
also clarify several subtle, and potentially confusing, details in
previous work in an attempt to help future research in this
area. We point out key differences between unconditional and
conditional EBMs, and warn that blindly applying training
methods for one to the other could lead to undesirable results
that do not generalize well. Finally, we emphasize the importance
of the Maximum Mutual Information principle as a necessary
condition to achieve good generalization in conditional EBMs as
implicit models for regression tasks.

I. INTRODUCTION

With many intriguing properties recently shown in [5],
conditional energy-based models (EBMs) have garnered sig-
nificant interest in the robotics manipulation community as
an implicit representation for behavior-cloned policies to deal
with multimodal and inconsistent demonstrations. Unfortu-
nately, training conditional EBMs for regression problems can
be challenging in practice, despite lots of remarkable successes
of its ”cousin” approach, unconditional EBMs, which are
typically used as generative models for data on very high
dimensional and nonlinear manifolds, e.g. images [8, 3, 2].

This paper does not present any new methods, and provides
only minor empirical tuning on top of previous work. Rather,
we aim to clarify the gap between theory and practice in
training conditional EBMs for regression problems, such as
behavior cloning. Our path to improving conditional EBM
training was filled with many dead-ends due to incorrect
and confusing exposition in the previous text [5, 7] and
our failure to realize the differences between conditional and
unconditional EBMs, leading to unsuccessful attempts to apply
methods for training unconditional EBMs to the other. We
hope our lessons shared in this paper help clear the confusion,
and prevents other people from making the same mistakes,
and steer future research back to the right direction.

II. BACKGROUND

Instead of representing a policy as an explicit function
y = Fθ(x), directly mapping from an observation x to an
action y, Implicit Behavior Cloning (IBC) [5] proposes to first
learn an energy function Eθ(x, y) that maps an observation-
action pair to an energy value in R. For inference, this energy
function is minimized to produce a (hopefully) optimal action:

ŷ = argminy Eθ(x, y). The intriguing benefits of this policy
representation scheme have been discussed in [5].

In IBC, training the policy entails learning the energy
function Eθ(x, y) from a dataset of observation-action pairs
collected from human demonstrations. As presented in [5],
the loss function for training Eθ(x, y) is the negative log
likelihood (NLL): LNLL =

∑N
i=1 −log pθ(yi|xi), in which

the probability density function log pθ(y|x) relates to the
EBM function Eθ(x, y) via the Gibbs distribution: pθ(y|x) =
exp(−Eθ(x, y))/Zθ(x), where Zθ(x) =

∫
exp(−Eθ(x, y))dy

is the normalization factor depending on the given x. In short,

LNLL(θ) =

N∑
i=1

− log
exp(−Eθ(xi, yi))∫
exp(−Eθ(xi, y))dy

. (1)

NLL loss is also very commonly used in most unconditional
EBM works [10, 13], whose main concerns are different ways
to deal with the intractable integral in the normalization factor.
In [5], the nuisance integral is approximated as∫

e−Eθ(xi,y)dy ≈ e−Eθ(xi,yi) +

M∑
m=1

e−Eθ(xi,ỹ
m
i), (2)

where {ỹmi }Mm=1 is a set of negative action samples for each
observation xi. This leads to the following loss function:

LInfoNCE(θ) =

N∑
i=1

− log
e−Eθ(xi,yi)

e−Eθ(xi,yi) +
∑M

m=1 e
−Eθ(xi,ỹm

i)
.

(3)
Different sampling schemes could be used to obtain negative

samples {ỹmi }Mm=1 from the action domain. Beside the uniform
sampling scheme in Derivative-Free Optimizer (DFO) method,
[5] also proposes to use Langevin MCMC to sample directly
from the currently learned distribution pθ(y|xi).

III. COMMON MISINTERPRETATIONS

The InfoNCE loss (3) actually has a different meaning,
which we will revisit in Section V. Here, we discuss the
problems of interpreting it as an approximation of the NLL
loss as currently presented. In fact, the approximation of the
integral using a set of negative samples in (2) raises many
questions. First, a set of samples is typically used to approx-
imate the expectation of an arbitrary function: Ep(y) [f(y)] =∫
f(y)p(y)dy ≈ 1

M

∑
m f(ym), where ym ∼ p(y). However,

the normalization factor is not an expectation but the integral

of the function itself, hence the formula does not directly ap-
ply. A popular technique to better approximate the integral of
a function

∫
f(y)dy is to use importance sampling [7], which

turns the integral into an expectation under a chosen proposal
distribution q(y):

∫
f(y)dy =

∫ f(y)
q(y) q(y)dy ≈ 1

M

∑
m

f(ym)
q(ym) ,

where ym ∼ q(y), and the weight wm = 1/q(ym) of each
sample have to be taken into account. Because of this, the
approximation in (2) is only correct if the proposal q(y) is
a uniform distribution, as in DFO. Unfortunately, as noted in
prior work, uniform sampling does not scale well for problems
with high dimensional action spaces [5].1

We find that leveraging Langevin MCMC to obtain negative
samples from the currently learned distribution pθ(y|xi) to
approximate the integral in (2) is also confusing in several
other ways, not just because the sample weights are not taken
into account. The current set of samples approximating the
current distribution becomes outdated when the distribution
is updated in the next optimization step. To be correct,
experiments (in addition to what is indicated in the IBC
code) should be performed doing backpropagation through the
entire chain of MCMC; however, this is a challenging task
due to the stochasticity and discrete nature of the samples.
A similar problem involving optimization of an integral of
the distribution under optimization also arises in Variational
Auto Encoder, where the reparameterization trick is used to
obtain samples from a (different) fixed normal distribution [9].
Unfortunately, the technique is not applicable in our case, since
the inverse distribution required in the reparameterization trick
does not have a closed form formula in our general setting.

In EBM literature, samples of the currently learned distri-
bution from Langevin MCMC are used to approximate the
gradient of the NLL loss, not the integral in the loss itself.
This effectively leads to another loss function whose gradient
w.r.t. θ is the same as the gradient of (1) approximated using
the set of MCMC samples 2:

LMCMC(θ) =

N∑
i=1

(
Eθ(xi, yi)−

1

M

M∑
m=0

Eθ(xi, ỹ
m
i)

)
.

(4)
Unfortunately, we did not notice significant improvements in
using this loss function in our experiments.

Another important mismatch in theory and practice lies
in the Langevin MCMC formula used in IBC. The correct
formulation [3, 6, 16] is

yk+1 = yk − λ

2
∇yEθ(x, y

k) +
√
λ ωk, ωk ∼ N (0, I) (5)

However, in IBC, the following formula is effectively used:

yk+1 = yk − λ

2
∇yEθ(x, y

k) + λ ω̂k, ω̂k ∼ N (0, σ) (6)

where σ permits additional scaling of the noise term. Even
assuming σ = 1, the subtle difference between the coefficients

1We tried using Gaussian mixture models as the proposal density, following
[7], but did not achieve good results for problems in high dimensional spaces.

2Detailed derivation can be found in [10]

(a) IBC’s Langevin samples (b) True Langevin samples

Fig. 1: IBC’s vs True Langevin MCMC samples3

for gradient and noise terms can create a large difference in
how the samples approximate the underlying distribution. Fig.
1 shows that the correct formulation approximates the mean
and variance of the Gaussian accurately, whereas the IBC
formulation does not. 3

However, in training EBM, we found that the IBC’s incor-
rect Langevin MCMC formulation seems to work better in
practice than the correct formulation. For some of the tasks
we tested against, we found it useful to tune the noise scaling
σ of IBC’s Langevin MCMC down to a small value, typically
0.01, so that the negative samples are very close to the positive
samples for good training results. We also found that using
one long chain MCMC, throwing away initial samples during
the burn-in stage, and collecting M samples at the end of the
chain, as typically done in MCMC literature, does not work as
well as using multiple independent short chains and selecting
the last sample from each chain, as is done in IBC.

These mismatches between theory and practice reveal the
gap in our understanding of Langevin MCMC in conditional
EBMs training, and we await a better theoretical explanation.

IV. FAILED ATTEMPTS

To improve EBM’s robustness and generalization, we first
tried to avoid a well-known “deep valley” problem, where the
low energy region around a positive sample is very small and
closely surrounded by the high energy regions around it [10].
In fact, the ideal Gibbs distribution that minimizes the NLL
loss in (1) is a mixture of Dirac delta distributions whose peaks
are at the positive data points and volume under the curve on
the entire domain (i.e. the integral in the denominator of (1)) is
zero. Such a function, however, might suffer from robustness
and generalization issues. Following MaxEnt RL [4], we added
a maximum conditional entropy regularizer to the original
loss function, detailed in the Appendix, which minimizes the
variance of energies of negative samples, effectively forcing
the resulting distribution to be close to a uniform distribution,
which has the maximum entropy. We observe that the correct
Langevin MCMC can produce reasonable results using this
regularizer, however, it is not better than the original IBC’s
Langevin MCMC with a small noise σ.

We also tried to improve the quality of MCMC samples by
using a replay buffer to simulate long-chain MCMCs [3]. This
technique for training unconditional EBMs does not directly
apply to conditional EBMs, since different conditional distri-
butions cannot share the same replay buffer. Hence, we train

3Details on the correct and incorrect Langevin formulation, numerical
experiments, and plots can be found in Appendix B.

a joint EBM, modeling the joint distribution pθ(x, y), which
is also reducible to the conditional for inferring the optimal
action pθ(xi, y) ∝ pθ(y|xi). The results show that it can overfit
to the training data very well only after a few epochs, but
generalizes very poorly to unseen data in the validation set.
This should not come as a surprise because all samples of
unseen observations in the joint domain are treated as negative
samples during training. The lessons we learned from this
failure are two-fold. First, blindly applying techniques for
unconditional EBMs to train conditional EBMs might not be
a good idea. Second, there are many models with the same
representational power that can fit the training data well, but
not all of them can generalize well to unseen observations.
Although the IBC’s incorrect Langevin MCMC happens to
generalize well, a principle to select implicit models with
better generalization capability is currently lacking.

V. MAXIMUM MUTUAL INFORMATION

We realize the following key difference between uncondi-
tional and conditional EBMs in their requirements for gener-
alization: whereas unconditional EBMs for generative model
are meant to sample new data from a learned distribution,
conditional EBMs for regression requires the inference process
to produce outputs that generalize well to unseen inputs.

A necessary condition for good generalization in regres-
sion is that the model should maximize the dependencies
between the input and output. Hence, one of the goals of
the loss function for training conditional EBMs should be to
maximize the mutual information between them to improve
generalization. In fact, the InfoNCE loss function in (3)
was originally derived for that purpose [15]. It is not an
approximation of the NLL loss, but the negative of a lower
bound of the mutual information between observations and
actions. Minimizing it effectively maximizes that lower bound,
resulting in distributions with high mutual information. Due
to that effect, it underlies many successful results in self-
supervised contrastive learning, e.g. [1, 12].

However, the InfoNCE loss function has to be used with
care. Essentially, it models the ratio between the conditional
and the marginal densities in the mutual information I(x, y) =∫
p(x, y) log pθ(y|x)

p(y) dxdy. Part of its name “noise contrastive
estimation” (NCE) stems from the goal to differentiate noisy
samples of p(y) from the true samples of pθ(y|x). Following
the rigorous proof in [11], [14] pointed out that in order for
InfoNCE to be a proper bound of the mutual information, the
negative samples {ỹmi }Mm=1 have to be independently sampled
from the marginal p(y). This explains why our attempts to
obtain the correct samples of the currently learned conditional
distribution using a long-chain MCMC did not go well: they
are not independent and do not come from a noise distribution.
Using independent samples from multiple short chains as done
in IBC has a better chance to succeed.

Moreover, the small noise scaling σ in IBC’s incorrect
Langevin MCMC actually helps in maximizing the mutual
information. Due to the small σ, many generated negative
samples are very close to the positive ones, leading to the

Fig. 2: Validation success rates of IBC’s Langevin (cyan) and
Marginal Action Sampler (red) 4

aforementioned “deep valley” effect. However, despite being
undesirable in unconditional EBMs, these deep valleys should
be favorable in conditional EBMs since they produce con-
ditional densities with very low entropy H(y|x), effectively
increasing the mutual information, since I(x, y) = H(y) −
H(y|x). Explicit models are the extreme case where pθ(y|x)
are Dirac delta distributions with zero entropy. This explains
why our earlier attempts to maximize the conditional entropy
following MaxEnt RL literature headed to a wrong direction.

Inspired by the mutual information lower-bound proof of
InfoNCE, we also tried to replace the IBC’s incorrect Langevin
sampler with a marginal action sampler (MAS) to obtain
independent negative samples from p(y). We train the marginal
EBM pγ(y) using the correct Langevin MCMC method with
the maximum entropy regularization (see the Appendix). Max-
imizing the marginal entropy H(y) helps to further increase
the mutual information (see the I(x, y) formula above). We
use MCMC samples from training the marginal action EBM
pγ(y) as negative samples in the InfoNCE loss (3) to train
the targeted conditional EBM concurrently. Our preliminary
results on particle environments in [5] are encouraging. As
shown in Fig. 2, EBMs trained by MAS appear to be on par
with IBC’s incorrect Langevin MCMC. 4

VI. CONCLUSION AND FUTURE WORK

We identified the gap between theory and practice in train-
ing conditional EBMs for implicit policy representation, and
clarified the confusing interpretation in previous work. We also
pointed out the key difference in generalization requirements
between unconditional and conditional EBMs, which calls
for more attention on conditional EBMs training methods.
We arrived at the Maximum Mutual Information principle to
improve the generalization of conditional EBMs for regression.
However, that principle might not be sufficient. In order for
the model to generalize well, it should also capture the “trend”
of how the input-output data in their joint domain spread far
beyond the training data regions. Leveraging the generalization
power of explicit functions to improve that of the implicit ones,
e.g. [17], is an interesting direction for future work.

4See Appendix D for more details about the training setup.

ACKNOWLEDGMENTS

Pete Florence for valuable discussions, and all Google IBC
authors for their excellent work.

REFERENCES

[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International con-
ference on machine learning, pages 1597–1607. PMLR,
2020.

[2] Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34, 2021.

[3] Yilun Du and Igor Mordatch. Implicit generation and
modeling with energy based models. Advances in Neural
Information Processing Systems, 32, 2019.

[4] Benjamin Eysenbach and Sergey Levine. Maximum
entropy rl (provably) solves some robust rl problems.
arXiv preprint arXiv:2103.06257, 2021.

[5] Pete Florence, Corey Lynch, Andy Zeng, Oscar A
Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson.
Implicit behavioral cloning. In Conference on Robot
Learning, pages 158–168. PMLR, 2022.

[6] Mark Girolami and Ben Calderhead. Riemann manifold
langevin and hamiltonian monte carlo methods. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

[7] Fredrik K Gustafsson, Martin Danelljan, Radu Timofte,
and Thomas B Schön. How to train your energy-based
model for regression. In Proceedings of the British
Machine Vision Conference (BMVC), September 2020.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denois-
ing diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems,
volume 33, pages 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[9] Diederik P Kingma, Max Welling, et al. An introduction
to variational autoencoders. Foundations and Trends® in
Machine Learning, 12(4):307–392, 2019.

[10] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato,
and F Huang. A tutorial on energy-based learning.
Predicting structured data, 1(0), 2006.

[11] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex
Alemi, and George Tucker. On variational bounds of
mutual information. In International Conference on
Machine Learning, pages 5171–5180. PMLR, 2019.

[12] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International Conference on Ma-
chine Learning, pages 8748–8763. PMLR, 2021.

[13] Yang Song and Diederik P Kingma. How to train your
energy-based models. arXiv preprint arXiv:2101.03288,
2021.

[14] Michael Tschannen, Josip Djolonga, Paul K Rubenstein,
Sylvain Gelly, and Mario Lucic. On mutual information
maximization for representation learning. arXiv preprint
arXiv:1907.13625, 2019.

[15] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv e-prints, pages arXiv–1807, 2018.

[16] Wikipedia contributors. Metropolis-adjusted langevin
algorithm. Wikipedia, the free encyclopedia, 2022.
URL https://en.wikipedia.org/w/index.php?title=
Metropolis-adjusted Langevin algorithm&oldid=
1074347589. [Online; accessed 21-June-2022].

[17] Jianwen Xie, Zilong Zheng, Xiaolin Fang, Song-Chun
Zhu, and Ying Nian Wu. Cooperative training of fast
thinking initializer and slow thinking solver for condi-
tional learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://en.wikipedia.org/w/index.php?title=Metropolis-adjusted_Langevin_algorithm&oldid=1074347589
https://en.wikipedia.org/w/index.php?title=Metropolis-adjusted_Langevin_algorithm&oldid=1074347589
https://en.wikipedia.org/w/index.php?title=Metropolis-adjusted_Langevin_algorithm&oldid=1074347589

APPENDIX

A. Derivation of Maximum Entropy Regularization

Here we derive the maximum entropy (H) regularizer in the negative log-likelihood loss function, used in our failed attempt
in Section IV and in the Marginal Action Sampler in Section V:

−Epdata
[log(pθ(y|x)) +H(pθ(y|x))] ≈ − 1

N

N∑
i=1

(
log(pθ(yi|xi))−

∫
pθ(y|xi) log(pθ(y|xi))dy

)

= − 1

N

N∑
i=1

(
log

(
exp(−Eθ(xi, yi))

Zθ(xi)

)
−
∫
pθ(y|xi) log

(
exp(−Eθ(xi, y))

Zθ(xi)

)
dy

)

= − 1

N

N∑
i=1

(
−Eθ(xi, yi)− logZθ(xi)−

∫
pθ(y|xi) (−Eθ(xi, y)− logZθ(xi)) dy

)

= − 1

N

N∑
i=1

(
−Eθ(xi, yi)− logZθ(xi) +

∫
pθ(y|xi)Eθ(xi, y)dy +

∫
pθ(y|xi) logZθ(xi)dy

)

= − 1

N

N∑
i=1

(
−Eθ(xi, yi)− logZθ(xi) +

∫
pθ(y|xi)Eθ(xi, y)dy + logZθ(xi)

)

=
1

N

N∑
i=1

(
Eθ(xi, yi)−

∫
pθ(y|xi)Eθ(xi, y)dy

)
,

Taking the gradient of the loss:

−∇θEpdata
[log pθ(y|x) +H(pθ(y|x))] ≈

1

N

N∑
i=1

(
∇θEθ(xi, yi)−∇θ

∫
pθ(y|xi)Eθ(xi, y)dy

)
.

Expanding the second term:

−∇θ

∫
pθ(y|xi)Eθ(xi, y)dy = −

∫
((∇θpθ(y|xi))Eθ(xi, y) + pθ(y|xi)∇θEθ(xi, y)) dy

= −
∫
(∇θpθ(y|xi))Eθ(xi, y)dy − Epθ(y|xi) [∇θEθ(xi, y)]

= −
∫
pθ(y|xi)(∇θlog pθ(y|xi))Eθ(xi, y)dy − Epθ(y|xi) [∇θEθ(xi, y)]

= −Epθ(y|xi) [(∇θlog pθ(y|xi))Eθ(xi, y)]− Epθ(y|xi) [∇θEθ(xi, y)]

then further expanding the first term:

−Epθ(y|xi) [Eθ(xi, y)∇θlog pθ(y|xi)] = −Epθ(y|xi) [Eθ(xi, y)∇θ(−Eθ(xi, y)− logZθ(yi))]

= Epθ(y|xi) [Eθ(xi, y)∇θEθ(xi, y) + Eθ(xi, y)∇θlogZθ(yi)]

= Epθ(y|xi) [Eθ(xi, y)∇θEθ(xi, y)] + Epθ(y|xi) [Eθ(xi, y)]∇θlogZθ(yi)

= Epθ(y|xi) [Eθ(xi, y)∇θEθ(xi, y)]− Epθ(y|xi) [Eθ(xi, y)]Epθ(y|xi) [∇θEθ(xi, y)],

where we have used the well-known fact that

∇θ log

∫
exp (−Eθ(xi, y)) dy =

1∫
exp (−Eθ(xi, y)) dy

∇θ

∫
exp (−Eθ(xi, y)) dy

=
1

Zθ(xi)

∫
∇θ exp (−Eθ(xi, y)) dy

=

∫
exp (−Eθ(xi, y))

Zθ(xi)
∇θ (−Eθ(xi, y)) dy

=

∫
pθ(y|xi)∇θ (−Eθ(xi, y)) dy

= Epθ(y|xi) [∇θ (−Eθ(xi, y))] (7)

In summary,

−∇θEpdata
[log pθ(y|x) +H(pθ(y|x))] ≈

1

N

N∑
i=1

(
∇θEθ(xi, yi)− Epθ(y|xi) [∇θEθ(xi, y)]

+Epθ(y|xi) [Eθ(xi, y)∇θEθ(xi, y)]

−Epθ(y|xi) [Eθ(xi, y)] Epθ(y|xi) [∇θEθ(xi, y)]
)

Monte Carlo approximation of the gradient:

−∇θEpdata
[log pθ(y|x) +H(pθ(y|x))] ≈

1

N

N∑
i=1

(
∇θEθ(xi, yi)−

1

M

M∑
m=1

∇θEθ(xi, ỹ
m
i)

+
1

M

M∑
m=1

Eθ(xi, ỹ
m
i)∇θEθ(xi, ỹ

m
i)

− 1

M

M∑
m=1

Eθ(xi, ỹ
m
i)

1

M

M∑
m=1

∇θEθ(xi, ỹ
m
i)

)
where ỹmi ∼ pθ(y|xi).

The new loss function that has the same gradient is:

Lentropy(θ) =
1

N

N∑
i=1

Eθ(xi, yi)−
1

M

M∑
m=1

Eθ(xi, ỹ
m
i) +

1

2

1

M

M∑
m=1

(Eθ(xi, ỹ
m
i))

2 − 1

2

(
1

M

M∑
m=1

Eθ(xi, ỹ
m
i)

)2

Intuitively, it is similar to the traditional Langevin MCMC loss function (4) with the added two terms that equal to the
variance of the negative samples’ energy values (Var[Eθ] = E[E2

θ] − E[Eθ]
2). Minimizing the energy function’s variance

effectively makes the resulting EBM close to the uniform distribution.

B. Langevin Correctness

There seemed to have been a small transcription error when the authors were implementing the Langevin step in both
math and code. To illustrate, we compare three slightly different formulations existing, with minor adjustments to notation for
consistency and equating Eθ(y

k) = Eθ(x, y
k). The step sizes used in each are either ϵ, λ, or τ (where λ = ϵ2 = 2τ), and are

ultimately equivalent:
1) Equation 1 in [3] effectively states:

yk+1 = yk − λ

2
∇yEθ(y

k) + ψk, ψk ∼ N (0, λ)

= yk − λ

2
∇yEθ(y

k) +
√
λ ωk, ωk ∼ N (0, I)

2) Equation 2 in [6] effectively states:

yk+1 = yk − ϵ2

2
∇yEθ(y

k) + ϵ ωk, ωk ∼ N (0, I)

3) The Euler-Maruyama update rule from [16] effectively states (with a sign-flip):

yk+1 = yk − τ∇yEθ(y
k) +

√
2τ ωk, ωk ∼ N (0, I) (8)

However, while holding σ = 1, the equation in Sec. B.3 of [5] effectively states:

yk+1 = yk − λ

2
∇yEθ(y

k) + λ ωk, ωk ∼ N (0, I)

We believe the transcription error happened where N (0, λ2) = λ N (0, I) was mistakenly equated with N (0, λ) =
√
λ N (0, I).

Anecdotally, we believe that IBC’s incorrect Langevin MCMC is closer to gradient descent than true Langevin MCMC,
especially when the step size λ is ”far” from 1. Because the step sizes tend to be smaller, due to the normalization IBC
employs, then the gradient term dominates and the noise term is diminished.

The plots in Fig. 1 show the final 1000 iterations from a total of 4000 iterations for a single chain. The code (and parameters)
to generate the results can be found in this Jupyter notebook.

https://github.com/EricCousineau-TRI/repro/blob/96886ea/python/torch/langevin_step.ipynb

C. Implementation Details

For inclusion in our codebase, we implemented Implicit Behavior Cloning in PyTorch, cross-referencing the published
implementation in (which was using TensorFlow v2). We implemented both the DFO and Langevin based policies, and then
built upon them for above experiments. We validated our implementation by comparing both overfit (1 episode) and ”full”
training (2000 episodes) for the 2d and 16d particle environment and ensured that the logged metrics (loss, energies, distances
between positive and negative samples, success metrics, etc.) followed similar evolutions along training minibatches.

When we refer to experiments running correct Langevin, we actually use the formulation as stated in (8) rather than (5),
meaning the step size indicated is actually τ = λ

2 . 5

D. Training Setup

Our primary demonstration environment is the 2d particle environment for its simplicity and speed of training.
For training, we used a very similar setup as those in [5]:
• We use the same normalization for the observation and action space, such that the minimum and maximum in each space

occur at [−1, 1], respectively.
• Energy network is a simple MLP, 256 hidden units, 2 layers6, 0% dropout, ReLU activation, using Keras ”normal”-style

initializer7. For our experiments, we did not need the spectral norm application.
• For negative samples, we use Langevin sampling, either “correct” (8) or “ibc” (6). For speed (both in training and

inference), we use 10 iterations.
– For training, we select σ = 0.1 with “ibc” to allow more for aggressive convergence with fewer iterations.
– For inference, we select σ = 0.01 with “ibc” such that it behaves as gradient descent.
– For both training and inference, we use both ”global” clipping and per-iteration clipping at 25% of the original action

space. When drawing initial samples from a uniform distribution, we apply the same 5% margin to both ends of the
action space as is done in [5] (thus sampling from [−1.1, 1.1]).

– For the step size (λ for “ibc”, τ for “correct”), we use the same polynomial scheduler, starting at step size of 1,
decreasing to 0.001, with a power of 2.

– Due to a minor bug, we did not end up using gradient penalty as indicated in Sec. B.3.1 in [5].
• Training used PyTorch’s Adam optimizer with learning rate of 0.001, batch size of 512, step decay learning rate scheduler

with gamma of 0.99 decaying every 100 epochs.
• The following distinctions are made for the following trials, with 300 episodes for training:

– Ibc - Running “ibc“ Langevin formulation as mentioned above.
– Ibc, MAS - Using Marginal Action Sampler (same MLP architecture, but using 64 hidden units).
– Correct, MAS - Same as prior, but using “correct” Langevin formulation.
– Correct, MAS+MaxEnt - Same as prior, but using maximum entropy as well as an L2 norm on positive energies

(anchoring them towards zero).

5We used (5) in the paper to provide clearer distinction against (6).
6(nin × nhidden) → (nhidden × nhidden) → (nhidden × nout)
7Linear weights and biases initialized from N (0, σ) for σ = 0.05

	Introduction
	Background
	Common Misinterpretations
	Failed Attempts
	Maximum Mutual Information
	Conclusion and Future work
	Appendix
	Derivation of Maximum Entropy Regularization
	Langevin Correctness
	Implementation Details
	Training Setup

