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Abstract— A core challenge for an autonomous agent acting
in the real world is to adapt its repertoire of skills to cope with
its noisy perception and dynamics. To scale learning of skills
to long-horizon tasks, robots should be able to learn and later
refine their skills in a structured manner through trajectories
rather than making instantaneous decisions individually at
each time step. To this end, we propose the Soft Actor-
Critic Gaussian Mixture Model (SAC-GMM), a novel hybrid
approach that learns robot skills through a dynamical system
and adapts the learned skills in their own trajectory distribution
space through interactions with the environment. Our ap-
proach combines classical robotics techniques of learning from
demonstration with the deep reinforcement learning framework
and exploits their complementary nature. We show that our
method utilizes sensors solely available during the execution
of preliminarily learned skills to extract relevant features
that lead to faster skill refinement. Extensive evaluations in
both simulation and real-world environments demonstrate the
effectiveness of our method in refining robot skills by leveraging
physical interactions, high-dimensional sensory data, and sparse
task completion rewards. Videos, code, and pre-trained models
are available at http://sac-gmm.cs.uni-freiburg.de.

I. INTRODUCTION

Thinking ahead is a hallmark of human intelligence. From
early infancy, we form rich primitive object concepts through
our physical interactions with the real world and apply this
knowledge as an intuitive model of physics for reasoning
about physically plausible trajectories and adapting them to
suit our purposes [1]. This is at odds with most current deep
imitation and reinforcement learning paradigms for robot
sensorimotor control, which, despite recent progress [2]–[5],
are typically trained to make isolated decisions at each time
step of the trajectory. In fact, most existing methods for learn-
ing manipulation skills are end-to-end high-capacity models
that map directly from pixels to actions [6]–[8]. However,
although these approaches can capture complex relationships
and are flexible to adapt in face of noisy perception, they
require extensive amounts of data, and the trained agent is
typically bound to take a distinct decision at every time step.

Learning from demonstration [9] is the classical paradigm
to tackle the problem of representing skills with a trajectory-
space policy. In this context, dynamical systems have shown
to be a physically plausible motion generation mechanism
that provides a high level of reactivity and robustness
against perturbations in the environment [10]–[14]. Despite
the great success of dynamical systems in affording flexible
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robotic systems for industry, where a high-precision state
of the environment is available, they are still of limited use
in more complex real-world robotics scenarios. The main
limitations of current dynamical systems in contrast to deep
sensorimotor learning methods are their incompetence in
handling raw high-dimensional sensory data such as images,
and their susceptibility to noise in the perception pipeline.

In this paper, we advocate for hybrid models in learning
robot skills: “Soft Actor-Critic Gaussian Mixture Models”
(SAC-GMMs). SAC-GMMs learn and refine robot skills in
the real-world and present a hybrid model that combines
dynamical systems and deep reinforcement learning in order
to leverage their complementary nature. More precisely,
SAC-GMMs learn a trajectory-based Gaussian mixture pol-
icy of skills from demonstrations and refine it by physical
interactions of a soft actor-critic agent with the world. Our
hybrid formulation allows the dynamical system to utilize
high-dimensional observation spaces and cope with noise in
demonstrations and sensory observations while maintaining a
reactive and robust trajectory-based policy when interacting
with dynamic environments. We argue that maintaining this
physically meaningful structure within the reinforcement
learning refinement will yield enhanced performance and
stability compared to residual corrections or direct learning
of desired end-effector velocities. The method is simple,
sample efficient and readily applicable in a variety of robotics
scenarios. We exemplify this, by using our hybrid model for
simulated peg insertion and power lever sliding skills, and
a real-world door-opening skill. We demonstrate that SAC-
GMM is able to successfully open a door in the real world
after half an hour of physical interaction.

The main contributions of this paper are: 1) a hybrid
model for learning and refining skills in trajectory distri-
bution space, 2) exploiting high-dimensional sensory inputs
obtainable solely during skill adaptation through physical
interaction, such as tactile images, gripper camera images,
and static camera depth maps to refine parameters of a
dynamical system, 3) mitigating amount of robot exploration
efforts for learning skills in sparse reward settings through a
dynamical system model learned from few demonstrations,
and 4) learning to refine two simulated and one real-world
robot manipulation skills.

II. SAC-GMM

We propose the hybrid approach Soft Actor-Critic Gaus-
sian Mixture Models (SAC-GMM) consisting of two phases.
In the first, we learn a dynamical system parameterization in
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Fig. 1: Structure of SAC-GMM: Given a set of human demonstrations, the GMM agent learns an initial dynamical system parameterization
θ that provides an analytical description of the robot’s skill trajectory. After N interactions by the GMM agent with the environment
(working with frequency F ), the SAC agent receives a high-dimensional observation, robot state, and a sparse success reward from the
environment. It then refines the initial GMM agent’s trajectory parameters by ∆θ for the next N interactions to optimize for skill success.

form of a Gaussian mixture model from a few demonstra-
tions. In the second, we refine this dynamical system with the
soft actor-critic algorithm through physical interactions with
the world. The architecture of our hybrid model is shown in
Figure 1.

A. Dynamical System: Gaussian Mixture Model Agent

Dynamical systems afford an analytical representation of a
motion’s progression over time, and accordingly, they enable
the robot to generate trajectories while being robust in the
face of perturbations.We formulate a robot skill as a control
law driven by an autonomous dynamical system, defined by
the robot pose ξ:

ξ̇ = fθ(ξ) + ϵ, (1)

where fθ is the robot skill model, a parametric, non-linear,
steady, and continuously differentiable function, and ϵ is a
zero-mean additive Gaussian noise. From a machine learning
perspective, learning the noise-free estimate of f from data
is a regression problem and can be addressed by a mixture of
Gaussians. Given a set of reference demonstrations X for a
robot skill, we parametrize Eq. (1) through Gaussian Mixture
Regression (GMR) [15]. We first estimate the joint probabil-
ity density P(ξ̇, ξ) of the robot pose and its corresponding
first-order derivative by a Gaussian mixture. Thereby, we
parametrize the robot skill model f by θ = {πk,µk,Σk}Kk=1,
where πk are the priors (or mixing weights), µk the means
and Σk the covariances of the k Gaussian functions.

By using this estimated joint probability density function,
we employ Gaussian mixture regression (GMR) to retrieve ξ̇
given ξ as the conditional distribution P(ξ̇ | ξ). This way
our skill model can reproduce the demonstrated skill by
estimating the next velocity at the current robot pose and
thus generate a trajectory by updating the pose ξ with the
generated velocity ξ̇ scaled by a time step and proceeding
iteratively. For detailed insights on using GMM encoded
dynamic system for imitation learning we refer the reader
to the extensively available literature [11], [12], [15]–[17].

B. Dynamical System Adaptation: Soft Actor-Critic Agent
Having learned the skill model fθ, we can now leverage

robot interactions with the world to explore and refine the
initial model. We formulate this refinement as a reinforce-
ment learning problem in which the agent has to modify the
learned skill in the trajectory space and has only access to
sparse rewards. In our skill refinement scenario, the agent
receives high-dimensional sensory measurements such as
RGB images, tactile measurements, or depth maps which
are encoded to a latent representation z by an autoencoder.
Together with the robot pose ξ, these form our continuous
state space. The action space is also continuous and consists
of the desired adaptation in the skill trajectory parameters
∆θ. Moreover, the environment emits a sparse reward only if
the robot executes the skill effectively. Namely, if st, at and
zt define the robot’s state, action, and latent representation
of observation respectively at time step t, then

st := {ξt, zt}, at := {∆πk,∆µk,∆Σk}Kk=1, (2)

and consequently

∆θ = πϕ(at | st), (3)

where πϕ is the robot skill refinement policy. We use
ρπϕ

(st,at) to denote the state-action marginal of the tra-
jectory distribution induced by the policy πϕ. The robot has
to learn this policy from its interactions with the world, such
that it maximizes the expected total reward of the refined
skill trajectory. Our particular choice for the reinforcement
learning framework to learn the skill refinement policy is the
soft actor-critic (SAC) algorithm [5].

Our SAC agent stores a collection of
{st,ot,at, rt, st+1,ot+1}Ti=1 transition tuples in a replay
buffer D, and concurrently learns an autoencoder AEω , a
policy πϕ and two Q-functions Qψ1 and Qψ2 (to prevent
overly optimistic value estimates) and their target networks.
More concretely, we use the autoencoder AEω to learn
a low-dimensional latent representation of the robot’s
high-dimensional observations.



Model
Task

Peg Insertion Lever Sliding
No With No With

Noise Noise Noise Noise
No With No With No With No With

Tactile Tactile Tactile Tactile Depth Depth Depth Depth
GMM 20% x 10% x 54% x 39% x
SAC 0% 0% 0% 0% 0% 0% 0% 0%

Res-GMM 24% 30% 26% 23% 49% 62% 29% 38%
SAC-GMM 44% 86% 33% 56% 68% 81% 42% 52%

TABLE I: The average success rate of skill models over 100 trials
per five different random seeds, under various noise and sensors
settings for the simulated robot skills.

C. Full Model

Figure 1 shows how our hybrid model learns and
refines a robot skill. The GMM agent is fitted on the
provided demonstrations and represents a dynamical system,
controlling the motion in the trajectory space. After each
N interaction steps with the world driven by the GMM
encoded dynamics, the SAC agent receives the current state
st consisting of the latent observation zt and the robot state
ξt, and additionally a reward rt for the previous step. It then
generates an action at := {∆πk,∆µk,∆Σk}Kk=1 according
to the current st to adapt the original GMM for the next N
interactions with the environment.

III. EXPERIMENTAL EVALUATION

We evaluate SAC-GMM for learning robot skills in both
simulated and real-world environments. The goals of these
experiments are to investigate: (i) whether our hybrid model
is effective in performing skills in realistic noisy environ-
ments, (ii) if exploiting high-dimensional data boosts the
dynamical system adaptation, and (iii) how refining robot
skills in trajectory space compares with alternative explo-
ration policies in terms of accuracy and exploration budget.

A. Evaluation Protocol

For skills in simulation, we collect 20 demonstrations by
teleoperating the robot. For the door opening skill in the
real-world, we use OpenPose [18] to track the human hand
and collect 5 human demonstrations. We compare our skill
model against the following models:
GMM: This baseline corresponds to the same dynamical
system that we learn with the provided demonstrations.
SAC: We employ the soft actor-critic agent [5] to explore
and learn the skills. We initialize the replay buffer of the
SAC agent with the demonstrations of skills.
Res-GMM: Analogous to our approach, this baseline first
learns a GMM agent using the demonstrations and then
employs a SAC agent for skill refinement. In contrast to our
approach,this SAC agent acts at each time step (instead of
each N step), and instead of predicting change in trajectory
parameters, it predicts a residual velocity which is summed
up with the GMM agent’s predicted velocity.

B. Experiments in Simulation
We start by evaluating our method on the peg insertion and

power lever sliding skills in simulation. Quantitative results
of the average success rate of each skill model over 100
trials per five different random seeds are reported in Table I.
Our SAC-GMM successfully performs the peg insertion and
lever sliding skills with an average final success rate of 86%
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Fig. 2: Real-world door opening skill: SAC-GMM learns to open
a real door after half an hour of physical interactions.

and 81% respectively. It achieves significantly higher success
rates than the GMM baseline, proving its effectiveness in
refining the robot skills through physical interaction.

To analyze the influence of noise in the perception
pipeline and the efficacy of SAC-GMM in exploiting high-
dimensional sensory data, we conduct several experiments
on the simulated environments (see Table I). We observe that
SAC-GMM can fully leverage high-dimensional data such
as tactile measurements and depth maps in all scenarios to
achieve a superior skill success rate. Table I also shows the
success rate of SAC-GMM with and without having access
to the tactile sensors [19] during refinement of the peg
insertion skill and to the depth camera during refinement
of the lever sliding skill in the noisy setup. We find that
SAC-GMM utilizes the high-dimensional observation to
deal better with noise and learn the skill faster.

C. Real-World Door Opening

Fig. 2 reports the results for the door opening skill in
the real world. We find that, although the initial dynamical
system (the GMM agent fitted on human demonstrations) en-
ables the robot to reach the door handle, the robot misses the
proper position to apply its force and can only open the door
with a 10% success rate. This failure is due to the robot’s
noisy perception and dynamics. Our SAC-GMM exploits the
wrist-mounted camera RGB images and sparse door opening
rewards and achieves a 90% success rate after only half an
hour of physical interactions (∼100 episodes) with the door.
The SAC baseline fails to learn the skill and the Res-GMM
model performs poorly, as adding residual velocities at each
time step results in non-smooth trajectories.

IV. CONCLUSIONS

In this work, we present “Soft Actor-Critic Gaussian
Mixture Models” as a new framework for learning robot
skills. This hybrid model leverages reinforcement learning
to refine robot skills represented via dynamical systems in
their trajectory distribution space and exploits the natural
synergy between data-driven and analytical frameworks. Ex-
tensive experiments carried out in both simulation and real-
world settings, demonstrate that our proposed skill model:
1) learns to refine robot skills through physical interactions
in realistic noisy environments, 2) exploits high-dimensional
sensory inputs available during skill refinement to cope better
with noise, and 3) performs robot skills significantly better
than comparable alternatives considering the performance
accuracy and exploration costs.
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