
Representations for Scheduling of Heterogeneous
Computation to Support Motion Planning

Justin McGowen
jmcgowen@mines.edu

Ismet Dagli
ismetdagli@mines.edu

Mehmet Belviranli
belviranli@mines.edu

Neil Dantam
ndantam@mines.edu

Department of Comptuter Science, Colorado School of Mines, Golden, CO 80401

I. INTRODUCTION
Abstract—Heterogeneous (multi-accelerator) chips are becom-

ing commonplace in many robotics applications due to their
ability to accelerate multiple types of computational workloads.
By effectively using these devices, robotic tasks can be performed
faster or with less resource usage. However, robotic systems
present a variety of requirements for scheduling on such devices,
especially on mobile robots. These include both time-critical
requirements based on physical constraints (e.g., computing fast
enough to safely handle unexpected obstacles) and resource
constraints (e.g., battery life). By considering these limitations
while scheduling, it is possible to expand the safe operation area
of a robot.

Additionally, changing environments can modify these con-
straints. In planning situations, this can then impact the optimal
plan, as the physical environment may impact viable schedules.
Thus, situations can arise where a longer path uses less resources
by allowing more efficient schedules. Currently, there is no general,
formalized way to reason about these constraints and the tradeoffs
they present. A more formal system of reasoning about these
tradeoffs also allows them to be considered in higher level tasks,
such as Task and Motion Planning.

To solve this problem, we propose the creation of a struc-
tured system, the Constrained Autonomous Workload Scheduler
(CAuWS). By using a representative language (AuWL), Timed
Petri nets, and mixed-integer linear programming, CAuWS
offers novel capabilities to represent heterogeneous computation
alongside physical constraints, optimization criteria, and motion
planning. This enables robots to optimally leverage new compu-
tational platforms. We demonstrate CAuWS with a simulation of
a drone running vision tasks under multiple physical constraints,
showing CAuWS is practical for dynamic environments and obeys
physical constraints.

Systems such as mobile robots or drones have two primary
limitations on time, energy, and other resources. The first
limitations are physical—e.g., braking time or rotor actuation
power. The other limitations are computational—i.e., moving
and processing data takes time and energy.

Heterogeneous processors allow us to make tradeoffs be-
tween the limitations present on mobile robots. Even without
parallellization, heterogeneous devices can achieve a more
optimal performance than a single device. Consider the GPU
and DLA on Nvidia’s Xavier devices [21] - the DLA can run
vision networks with less energy, at the cost of computation
time. If the lowest energy computation is desired, then the
DLA should be chosen. However, the real world places limits
on computation time that may force the use of GPU.

Considering scheduling under the physical constraints thus
requires an upper bound on values such as time or energy.

Finding the optimal schedule (mapping tasks to processors)
under such constraints is non-trivial on heterogeneous archi-
tectures due to the high number of accelerators with diverse
characteristics, and is known to be NP-complete.

This also enables higher level reasoning about task and
motion planning. By considering not only how the physical
limitations impact the schedules, but also how the chosen path
impacts the physical limitations (and thus schedules) the robot
encounters, it is possible to find more optimal paths balancing
physical and computational resource use.

CAuWS enables a generalized solution to the heterogeneous
scheduling problem that accounts for the physical constraints,
whose high-level operation is illustrated in Fig. 1. CAuWS is
able to assign operations from a wide variety of computational
workloads to PUs on heterogeneous architectures, creating a set
of static schedules for resource-constrained and time-critical
systems. These schedules are optimal with respect to the user-
defined objective (including time) and profiling, and despite
being static, can account for changing conditions.

To our knowledge, there is currently no such general,
formalized way to reason about the physical tradeoffs and
limitations for scheduling - and this reasoning is often necessary
to get the full benefit of a heterogeneous device. Typical
approaches for scheduling are separate from task or motion
planning, often neglecting physical constraints entirely and
instead seeking to greedily optimize time or energy.
To address this, this paper makes the following contributions:
• Our Autonomous Workload Language (AuWL) supports the

specification of data-flow and physical constraints that a
schedule must obey for a variety of robotic problems.

• Generating schedules from constraints enables formulation
of a set of constraints that combine many concerns—such
as safety, speed, or energy tradeoffs—into one problem.

• Timed Petri nets provide a convenient intermediate represen-
tation between problem definition and constraints.

• By leveraging existing, highly-engineered constraint solvers—
e.g., for Satisfiability Modulo Theories (SMT) and mixed-
integer linear programming (MILP) [9, 4] —we can easily
and programmatically add additional constraints and opti-
mization criteri.

• The approach is evaluated on a simulated PX4 drone, with
operations running on a real NVidia Xavier SoC, showing
practicality.



Computational
Flow Graph

Schedule
Criteria

HW Spec.
/ Profiling

A
uW

L Augmented
Petri Net

Linear
Constraints

Heterogeneous
Schedule

SMT/MILP
Solver

INPUT SCHEDULING OUTPUT

Fig. 1: Overview of CAuWS.

II. RELATED WORK
Scheduling for a variety of computational workloads on

multiple-accelerator (heterogeneous) systems has been investi-
gated [5, 18, 19, 24, 27, 1, 12, 15, 22, 2, 25, 8]. Our proposed
solution differs by mapping the physical dynamics to the
characteristics of heterogeneous computing.

A limited number of studies have structurally approached
timing in computation for robots by building models relating
physical constraints and computational elements [16, 26, 13].

While a variety of works consider energy in motion planning,
only a few works have investigated integrating resource usage
from computation into motion planning, such as balancing the
energy between computation and movement optimization[23].
This work only considers energy for static motion planning,
and not the computation performed during operation.

Petri nets are a form of directed graph. A limited number of
studies considered Petri nets for CPU-based, formal scheduling
representations for real-time [17, 20, 28] and hybrid [11, 29]
systems.

Constraint solving is used in automated planning [14],
robotics [7], and program verification and synthesis [3, 10].
Critically, modern, highly-engineered constraint solvers are
quite efficient [9, 4]. Previous scheduling techniques have also
used constraint solving in an ad-hoc manner.

III. PETRI NETS FOR SCHEDULING
This section briefly details Petri nets. 1.
A Petri net is a directed, bipartite graph.
Definition 1: A Petri net is the tuple N = (P, T, E), where,

• P is the finite set of place nodes,
• T is the finite set of transition nodes,
• E ⊆ (P × T ∪ T × P) are the edges between places and

transitions.
Each place P may contain a number of tokens. We call

the number of tokens contained in all places a marking.
When a particular transition fires, it changes the marking by
decrementing the tokens at incoming places and incrementing
tokens at outgoing places. Starting and finishing token counts
are defined for each place, to define an accepted sequence of
firings.

Petri nets make a convenient model for shared resources in
parallel systems, as their graph can represent task dependencies,
with tokens representing data flow, resource consumption, and
processor claiming.

For this paper, we use timed Petri nets, where a transition
has a delay between receiving sufficient inputs and firing. We
also add edge weights instead of working with integer tokens.

1For thourough coverage of Petri nets, we refer the reader to texts such as
[6].

Fig. 2: The set of schedules generated. CAuWS can precompute
multiple schedules for varying physical parameters, hadling
changing conditions. Schedule 1 is fast but uses more energy
scheduling all 3 tasks on all 3 devices simultaneously, while
Schedule 3 is the reverse, only using the CPU and DLA.

IV. CAUWS : PROPOSED METHODOLOGY
CAuWS performs several transformations on its input to

eventually reach a schedule. The input to CAuWS is a
specification of (1) the control flow graph (CFG) in the
AuWL file, (2) the necessary performance criteria , and (3)
the profiling data for estimated running times and energy
consumption. The output of CAuWS is a schedule with (1)
the set of tasks, (2) the ordering of tasks, and (3) the mapping
of tasks to PUs.

Our method assumes that the input CFG is static. For a fixed
workload including running several vision tasks (which can
occur for drones), this is an acceptable assumption. We then
introduce the novel Autonomous Workload Language. AuWL
describes the data flow of tasks and the necessary schedule
criteria. It also includes empirical profiling of task timings
and power usage. We use AuWL’s specification to construct
a timed Petri net intermediate representation which captures
the dependency structure, timings, and other quantities. We
then generate Mixed-Integer Linear Programming constraints
representing its operation that are then solved to obtain a
schedule. We use a pre-existing SMT solver (specifically, Z3 [9,
4]) to find a solution the constraints, which corresponds to a
sequence of Petri net firings representing a valid schedule.

V. HANDLING DYNAMIC CONDITIONS STATICALLY
While it may at first seem that CAuWS is impractical to

handle dynamic conditions due to the intensive computation
of an NP-complete problem, it is possible to generate a set of
schedules that can handle these changing conditions. It is still
necessary to know the properties of the robot and computational
tasks beforehand. To generate such a set of schedules, we
consider the schedule output by CAuWS as a function of input
parameters: the physical quantities that vary, such as velocity,
obstacle distance, and temperature. For monotonic constraints,
this function results in convex schedule regions. We can search
for these divisions, resulting in a lookup table such as Fig. 2
that can be used at runtime. This avoids expensive calls to
CAuWS during operation.

VI. EXPERIMENTS
We evaluate CAuWS in two case studies, demonstrating it’s

adaptability and adherence to constraints.



A. Case Study 1: Environment-limited Search and Rescue
The first simulation is a search-and-rescue task with a

quadcopter in a burning house. The drone must explore the
house to monitor fires and discover those in need of help by
distributing SLAM and 2 vision networks between a CPU,
GPU, and DLA. This creates three constraints. Once the
corresponding physical equations are expressed in the AuWL
file, CAuWS successfully schedules for constraints. These
constraints are:
• Heat: The varying temperatures from fire limit computation

to avoid overheating.
• Latency: As the compute latency increases, the stopping

distance increases limiting “reaction” time
• Power: The power at any given moment is shared between

the rotors and the computation, limiting velocity.
In this study, an autonomous drone, simulated with physics,

follows a predefined route through a hallway corner with a
heat source. The drone’s travel over the hallway results in
ambient temperatures ranging from 27 to 73 ◦C, velocities up
to 9.73 m

s , and obstacle distances as low as 0.3m. A trace of
this simulation is taken by recording temperature, velocity, and
obstacle distance. These values were then fed into CAuWS,
which successfully finds optimal schedules for the simulation.

CAuWS results in the set of schedules shown in Fig. 2.
Theoretically, safe schedules can be found as long as the drone
remains in the scheduleable reasons. These schedules were
then ran on a Xavier AGX to follow the simulation trace, with
each schedule running multiple times in a row over the course
of the drone’s path. This resulted in a total execution time of
9.96s and energy of 84.5J, compared to the predicted time of
9.19s and energy of 96.7J. These errors are reasonable given
a safety margin, and could likely be resolved with profiling
that addressed caching, contention, and other effects when the
operations are not isolated.
B. Comparison with the state-of-the-art

Most multi-accelerator scheduling algorithms do not integrate
physical constraints into scheduling decisions, which would
result in violation of the constraints, either not using faster
operations around the corner, or using too power-intensive
operations and overheating.

To the best of our knowledge, Sky is not the limit [16] is
the closest work that proposes a methodology that integrates a
limited set of physical constraints into scheduling decisions. To
compare CAuWS against F-1, we show that CAuWS results
in equivalent or better decisions in 11 different experiment
setups.
C. Case Study 2: Discovery & Tracking

We also demonstrate CAuWS’s ability to map physical
constraints of robots to computational scheduling with two
additional simulations, where an aerial drone must discover
and follow another aerial adversary.
1) Criteria 1: Power Limits

Drone power is shared between computation and the
actuation (rotors), and the total power a battery can provide
is limited. When rotor power is too high, computation power
must drop. Fig. 3 is a timeline of resulting power consumption.

62.0 62.1 62.2 62.3 62.4 62.5

Flight Time (s)

0

50

100

150

200

250

300

350

400

Po
w

er
(W

)

0.00

0.05

0.10

0.15

0.20

La
te

nc
y

(s
)

Latency-Power Tradeoff

Available Power
Compute Power
Rotor Power
Total Power
Latency

Fig. 3: Power consumption in a pursuit flight. CAuWS balances
power and latency under total power limits. Power values are
the max over a .05s window to conservatively satisfy power
limits.

0 10

Flight Time (s)

0

5

10

15

20

S
pe

ed
(m

/s
)

Adv. Velocity vs Latency

0 10

Flight Time (s)

0

2

4

6

8

10

12

Po
w

er
(W

)

Adv. Velocity vs Acc/Power

0.00

0.01

0.02

0.03

0.04

La
te

nc
y

(s
)

Adeversary Velocity
Required Latency
Compute Latency

Compute Power
Detection Accuracy

40

50

60

70

80

90

m
A

P
(%

)

Search/Pursuit Modes Scenario

Fig. 4: CAuWS can create schedules covering multiple op-
eration “modes” in a simulated flight, enforcing different
constraints for each.

2) Criteria 2: Multiple Modes and Latency Limits

The drone discovery and tracking scenario consists of two
modes: looking for an adversary and following the adversary.
These two modes impose different scheduling criteria. Having
multiple modes expands the range of dynamic situations we
can account for with a pre-generated set of schedules.

Fig. 4 shows the results of this multi-mode scenario. CAuWS
successfully chooses the lowest power option leading up to the
encounter, and satisfies the constraints in desired order during
pursuit.

VII. CONCLUSION

We presented CAuWS, a system to represent and generate
schedules that satisfy physical and computational constraints.
CAuWS can refine the safety margin of robot operation, and
supports further work in energy-optimal motion planning. sWe
specify computational workloads and schedule criteria with the
novel AuWL representation, construct augmented Petri nets,
and generate and solve constraints to find the schedule. We
validate the generated schedules satisfy constraints and adapt to
changing physical conditions with a simulated drone. CAuWS
offers foundation to address an expanded set of scheduling
and planning problems that satisfy physical constraints on
heterogeneous platforms.



REFERENCES
[1] H. Arabnejad and J. G. Barbosa. List scheduling algorithm

for heterogeneous systems by an optimistic cost table.
IEEE TPDS, 2014.

[2] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane,
Emanuele Del Sozzo, Abdurrahman Akkas, Yunming
Zhang, Patricia Suriana, Shoaib Kamil, and Saman Ama-
rasinghe. Tiramisu: A polyhedral compiler for expressing
fast and portable code. In CGO, 2019.

[3] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer
Strichman, and Yunshan Zhu. Bounded model checking.
Advances in Computers, 58, 2003.

[4] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein.
νz-an optimizing SMT solver. In TACAS, volume 15,
pages 194–199, 2015.

[5] Kevin J Brown, Arvind K Sujeeth, Hyouk Joong Lee,
Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle
Olukotun. A heterogeneous parallel framework for
domain-specific languages. In PACT, 2011.

[6] Christos G Cassandras and Stephane Lafortune. Intro-
duction to discrete event systems, volume 2. Springer,
2008.

[7] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri,
and Lydia E. Kavraki. An incremental constraint-based
framework for task and motion planning. IJRR, 37(10):
1134–1151, 2018.

[8] Mohammad I Daoud and Nawwaf Kharma. A hybrid
heuristic–genetic algorithm for task scheduling in hetero-
geneous processor networks. JPDC, 2011.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[10] Leonardo De Moura and Nikolaj Bjørner. Satisfiability
modulo theories: introduction and applications. Commu-
nications of the ACM, 54(9):69–77, 2011.

[11] I. Demongodin and N. T. Koussoulas. Differential petri
nets: representing continuous systems. IEEE Trans. on
Automatic Control, 1998.

[12] Dominik Grewe and Michael FP O’Boyle. A static task
partitioning approach for heterogeneous systems using
opencl. In Intl. conference on compiler construction,
pages 286–305. Springer, 2011.

[13] Ramyad Hadidi, Bahar Asgari, Sam Jijina, Adriana
Amyette, Nima Shoghi, and Hyesoon Kim. Quantifying
the design-space tradeoffs in autonomous drones. In
ASPLOS, pages 661–673, 2021.

[14] Henry A. Kautz and Bart Selman. Planning as satisfiability.
[16] Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul

Whatmough, Aleksandra Faust, Gu-Yeon Wei, David
Brooks, and Vijay Janapa Reddi. The sky is not the
limit: A visual performance model for cyber-physical
co-design in autonomous machines. IEEE CAL, 2020.

ECAI, 92:359–363, 1992.
[15] Minhaj Ahmad Khan. Scheduling for heterogeneous sys-

tems using constrained critical paths. Parallel Computing,
38(4-5):175–193, 2012.

[17] Sekhri Larbi and Slimane Mohamed. Modeling the
scheduling problem of identical parallel machines with
load balancing by time petri nets. Intl. Journal of
Intelligent Systems & Applications, 7(1), 2014.

[18] K. Li, X. Tang, and K. Li. Energy-efficient stochastic
task scheduling on heterogeneous computing systems.
IEEE Trans. on Parallel and Distributed Systems, 25(11):
2867–2876, 2014. doi: 10.1109/TPDS.2013.270.

[19] X. Mei, X. Chu, H. Liu, Y. Leung, and Z. Li. Energy
efficient real-time task scheduling on cpu-gpu hybrid
clusters. In INFOCOM, 2017.

[20] Martin Naedele. Petri net models for single processor
real-time scheduling. Citeseer, 1998.

[21] NVIDIA. Ai-powered autonomous machines
at scale — nvidia jetson agx xavier. https:
//www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-agx-xavier/. (Accessed
on 4/21/2022).

[22] Seren Soner and Can Özturan. Integer programming
based heterogeneous cpu–gpu cluster schedulers for slurm
resource manager. Journal of computer and system
sciences, 81(1):38–56, 2015.

[23] Soumya Sudhakar, Sertac Karaman, and Vivienne Sze.
Balancing actuation and computing energy in motion
planning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4259–4265. IEEE,
2020.

[24] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and
J. Emer. Scheduling heterogeneous multi-cores through
performance impact estimation (pie). In ISCA, 2012.

[25] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose
Ignacio Gomez, Christian Tenllado, and Francky Catthoor.
Polyhedral parallel code generation for cuda. TACO, 2013.

[26] Zishen Wan, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia,
Vijay Janapa Reddi, and Arijit Raychowdhury. Analyzing
and improving fault tolerance of learning-based navigation
systems. In DAC, 2021.

[27] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker.
Scalable thread scheduling and global power management
for heterogeneous many-core. In PACT, 2010.

[28] Haitao Zhang and Feiyue Wang. A review of petri net
based modeling and verification for embedded real-time
systems. In IDETC-CIE, 2005.

[29] Zhigang Hu, Xiangtao Jiang, and Jianbiao He. Perfor-
mance analysis technique for fixed priority scheduling
with hybrid real-time transactions. In 2008 Intl. Con-
ference on Information and Automation, pages 509–513,
2008. doi: 10.1109/ICINFA.2008.4608053.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/

	Introduction
	Related Work
	Petri Nets for Scheduling
	CAuWS : Proposed Methodology
	Handling Dynamic Conditions Statically
	Experiments
	Case Study 1: Environment-limited Search and Rescue
	Comparison with the state-of-the-art
	Case Study 2: Discovery & Tracking
	Criteria 1: Power Limits
	Criteria 2: Multiple Modes and Latency Limits


	Conclusion

