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Abstract—We motivate, discuss, and present a study on the
problem of view planning for radiance fields. While implicit
representations like radiance fields have demonstrated signifi-
cant promise as a 3D representation for downstream tasks in
manipulation, mapping, and navigation, success relies heavily on
the coverage of captured views, which are typically manually
specified. Our contributions focus on intelligently selecting these
views: building on a rich history of classical work in active vision,
we (1) discuss the design of active-3d-gym, our high-level
interface for benchmarking view planning for radiance fields,
and (2) propose and experimentally evaluate a simple solution
for the view planning problem based on radiance field ensembles.

Fig. 1: Visualization of candidate views that can be captured
in our active-3d-gym environment, with an environment
containing an object model imported from ShapeNet [1] and
the nerf-synthetic [2] dataset. The goal of active view
planning is to build a reconstruction of the camera model using
a minimum number of these views.

I. INTRODUCTION

Recovering 3D representations of objects and scenes from
2D observations is a fundamental task for a range of interests
in vision and robotics. Significant progress in this area has
recently been made in the form of radiance fields [2], which
have enabled a flurry of spectacular results in 3D reconstruc-
tion and perception by combining the algorithmic prior of
ray marching-based differentiable rendering with an expressive
and smoothly optimizable underlying representation.

When applied to robotic systems that need to perceive, inter-
act with, or manipulate unknown environments, however, these
techniques are limited by their dependence on the coverage of
selected views. While views for the offline datasets typically
used for the evaluation and validation of these methods can be
manually or densely chosen, it is not always clear what views
need to be captured in the real world.

As algorithmic improvements compound with computa-
tional ones to enable real-time applications of implicit 3D
representations like radiance fields in robotics and manipu-
lation, it will become increasingly important for robots to
understand not only how to perceive captured views of un-
known environments, but also what views should be captured
to begin with. In this direction, we build on a broad body of
work in active vision [3] to discuss both a benchmark suite,
active-3d-gym, and a view planning method, radiance
field ensembles, to address a simple question: how do we
intelligently choose views that result in accurate radiance
fields?

II. RELATED WORK

A. Radiance Fields

The success of volume rendering via radiance fields [2] has
led to a flurry of recent work in 3D reconstruction and novel
view synthesis. Extensions have been abundant, and include
addressing of aliasing [4], 360° scenes [5], deformation [6],
relighting [7], in-the-wild photos [8], depth perception [9],
semantic labeling [10, 11, 12], and uncertainty estimation [13].

While standard neural radiance fields [2] are too slow for
real-time use cases, considerable progress has been made in
runtime-focused modifications. Several methods have been
proposed for distilling pretrained NeRF models into structures
amenable to real-time rendering, for example, via caching [14],
sparse voxel grids [15], sparse voxel octrees [16], ensembles of
smaller networks [17], or planar structures [18]. Other works
have improved training time via depth-based supervision [19]
or pre-initialization [20], as well as both training and rendering
time by combining various spatial data structures with trilinear
interpolation [21, 22, 23, 24, 25]. For experiments in this work,
we rely on an open-source implementation [26] of Müller
et al. [25]’s instant-ngp, which enables close-to-real-time
training of a range of neural implicit models.

B. Radiance Fields in Robotics

Several recent papers have demonstrated promising results
using implicit models like radiance fields in robotics. These
include vision-based navigation and state estimation [27],
mapping [28, 29], and several works in manipulation: Ich-
nowski et al. [30] use NeRF’s ability to model non-Lambertian
surfaces to grasp transparent objects, Driess et al. [31] use
object-level NeRF representations for latent dynamics predic-
tions and planning, Li et al. [32] combine NeRF with time-
contrastive learning to produce 3D scene representations for



Fig. 2: Examples of simple environments in
active-3d-gym. We provide a shared interface for
models imported from a wide range of sources, including
ShapeNet [1], nerf-synthetic [2], and Replica [45].

manipulation involving both rigid bodies and fluids, and Yen-
Chen et al. [33] use NeRF to generate labels for learning dense
object descriptors. Our work is inspired by two observations:
(1) implicit representations will only become more useful for
robotics as runtime characteristics are improved by advances
in software and hardware, and (2) existing works in robotics
that leverage these representations typically use hand-specified
sets of views, which cannot be relied on in unknown or
unstructured environments.

C. Active View Planning

Prior methods for view planning can be loosely classified
as either synthesis methods or search methods [3]. Synthesis
methods directly calculate the pose a of next best view under
certain system and task constraints, and can be either based on
hand-designed models [34] or learned from data [35]. Search-
based methods, on the other hand, focus on methods for
evaluating candidate views. Typically formulated with an in-
formation gain metric, these search-based methods have been
explored for tactile perception [36], voxels [37], surfels [38],
and point clouds [39], with many works focused specifically in
the context of manipulation [40, 41]. In this work, we focus
on view planning through a search-based lens.

D. Uncertainty estimation

Uncertainty estimation is intrinsic to the view planning
problem for implicit models — in the greedy case, view
planning reduces to repeatedly selecting actions that minimize
the resulting overall epistemic uncertainty. Several approaches
proposed for uncertainty estimation in general neural networks
can be applied here, notably based on test-time dropout
[42, 43] or deep ensembles [44].

We focus on view selection using a photometric uncertainty
estimate from an ensemble of radiance field models, which we
also compare against the variational S-NeRF [13] approach
that relies on uncertainties as a network output.

III. BENCHMARKING

To evaluate search-based view selection algorithms for
radiance fields, we implemented a benchmark suite inspired
by OpenAI Gym [46], which we call active-3d-gym1. The
suite includes high-level interfaces for:

• Environments. Several offline datasets are supported
out-of-the-box. This includes precaptured views adapted

1Still under development: https://github.com/kevin-thankyou-lin/active-3d-
gym

from the ShapeNet [1], nerf-synthetic [2], and
Replica [45] datasets.

• Actions. At each step, environments expect an action
at ∈ SE(3) corresponding to one of a fixed collection
of training set views that can be taken.

• Observations. From the action (selected view), the en-
vironment return a corresponding observation tuple ot =
(It, Dt), which contains rendered RGB and, if available,
ground-truth distance2 maps as observation. Evaluations
can be run both with and without distance supervision
(our current experiments focus on the latter).

• Evaluation metrics. We evaluate view selection quality
by reporting photometric PSNRs (peak signal-to-noise
ratios) for visual accuracy and distance errors for geo-
metric accuracy on a held-out set of validation views. To
compare view selection strategies, these metrics can be
plotted against captured view counts.

Consistent with most prior work in view planning [3],
note that the core limitation of the described benchmark is
the focus on a “teleportation” context, where we consider
the number of views captured but not how the camera is
moved to these views. Following prior applications of general
view planning to robot manipulators [40, 41], extensions of
active-3d-gym could include consideration of factors like
kinematic feasibility, motion costs, and collisions, in concrete
settings with both holonomic and non-holonomic robot em-
bodiments, and with consideration for potential capture of the
intermediate views between candidate poses.

IV. ENSEMBLE-BASED VIEW PLANNING

Building on the insight that we can approximate the in-
formation gain that results from capturing a particular view
by computing the epistemic uncertainty associated with it,
we study radiance field ensembles (RFE), for capturing the
information gain associated with candidate views.

The RFE approach follows the search-based planning
paradigm, and uses an ensemble of K radiance field models
that are trained in parallel. At each step, we allocate each
network a fixed budget of rays and apply that budget to
minimize standard photometric (and in the future, optionally
distance-based) losses:

min
θk

1

|R|
∑
r∈R

[
||C(r)− Ĉθk(r)||22

]
(1)

where θk is the parameter vector for the k-th model in the
ensemble, r is a ray, R is the set of all observed rays,
C(r) ∈ [0, 1]3 is a ground-truth color, and Ĉθk(r) ∈ [0, 1]3

is a rendered color. Because models in the ensemble are
trained on the same set of views but initialized with a different
seed, representations of unobserved or hallucinated portions of
the scene should differ between the models, while observed

2For simplicity, we standardize on using distance rather than depth where
possible. Given a ray, rendered distance depends only on the location of the
ray’s origin (that is, the camera’s optical center), while depth is a local Z
coordinate that also depends on the camera’s orientation.

https://github.com/kevin-thankyou-lin/active-3d-gym
https://github.com/kevin-thankyou-lin/active-3d-gym


Objects Lego Drums Ficus Mic Ship Chair

Views 10 20 10 20 10 20 10 20 10 20 10 20
random 17.8 23.5 15.7 18.3 19.1 22.4 21.0 24.9 16.5 19.8 19.7 24.3

±1.0 ±0.7 ±0.2 ±0.2 ±0.1 ±0.1 ±0.6 ±0.5 ±0.4 ±0.5 ±0.9 ±0.4

even 17.8 23.6 15.8 18.3 19.0 22.6 21.0 25.8 16.6 20.3 19.8 24.7
±0.6 ±0.6 ±0.1 ±0.2 ±0.2 ±0.1 ±0.7 ±0.6 ±0.2 ±0.6 ±0.6 ±0.5

S-NeRF* 17.2 22.5 14.9 17.1 19.2 21.8 23.3 26.1 15.9 19.2 18.1 22.2
±0.7 ±1.8 ±0.1 ±0.0 ±0.5 ±1.0 ±1.6 ±0.7 ±1.6 ±1.1 ±0.0 ±0.0

RFE 18.9 25.4 16.2 19.1 18.9 23.1 21.8 27.1 18.1 23.2 20.7 25.7
±0.2 ±0.3 ±0.3 ±0.2 ±0.1 ±0.1 ±0.5 ±0.4 ±0.2 ±0.2 ±0.3 ±0.1

TABLE I: Photometric validation PSNRs, on 10 and 20
captured views in the nerf-synthetic [2] environments.

portions that are corresponded across observed views will
agree.

Based on this intuition, we break RFE down into three steps,
which can be repeated until a view budget is expended:

1) View selection. For each view at of a set of candidate
views, we select a sparse set of rays R(at) and render
them from each model in the ensemble. Then, we use
photometric variances across the ensemble to compute
an information gain IG(at) for each candidate view:

IG(at) ∝
∑

r∈R(at)

3∑
i=1

log(VarK(Ĉθ(r)
(i)))

where VarK denotes the variance across the rendered
color values for a particular ray across K models in the
ensemble. In practice, we find that this formulation can
also be successfully implemented as a simple sum over
sample variances.

2) Sensor scanning. We choose the view with the highest
estimated information gain as the next action.

3) Representation update. We capture the selected view,
and train each model in the ensemble of radiance fields
using all views captured thus far.

Although ensemble training is often viewed as expen-
sive [13], in the view selection setting we note that they are
actually highly practical from an efficiency standpoint. Ensem-
bles are trivial to parallelize, require neither full convergence
of individual radiance fields nor dense rendering of evaluated
views, and can take advantage of recent improvements in
radiance field training speed [19, 25].

V. EXPERIMENTS

We use the active-3d-gym benchmark suite to compare
RFE against three baselines: (1) random: simple uniform
sampling with replacement, (2) even: uniform sampling with-
out replacement, and (3) S-NeRF*: an uncertainty estimation
implementation based on the stochastic NeRF [13] framework.

We report interquartile means and standard errors for dif-
ferent metrics, methods, and environments in Tables I, II and
III, for 10 and 20 captured views. Results use ensemble sizes

Objects Bag Camera Car Guitar Jet Motorbike

Views 10 20 10 20 10 20 10 20 10 20 10 20
random 27.4 33.7 24.1 29.2 23.7 28.1 31.7 35.1 26.4 30.4 26.2 31.0

±0.4±0.1±0.0±0.2 ±0.8±1.4±0.3±0.4±0.3±0.2±0.5±0.6

even 27.5 33.9 24.5 30.2 24.0 27.6 31.8 35.9 26.8 30.6 26.4 31.2
±0.2±0.5±0.9±0.3 ±0.6±0.8±0.2±0.6±0.9±0.5±0.6±0.2

S-NeRF* 17.8 23.7 19.3 24.0 18.3 21.8 28.1 31.3 22.7 27.6 20.3 28.0
±6.7±5.9±2.5±0.5 ±4.2±5.1±0.9±2.6±6.4±1.3±4.2±1.9

RFE 27.6 34.9 24.1 30.8 23.3 27.9 30.8 36.2 27.3 31.1 26.5 31.8
±2.0±0.7±1.2±0.5 ±0.2±1.3±2.3±0.6±1.5±0.2±0.5±0.4

TABLE II: Photometric Validation PSNRs, on 10 and 20
captured views in environments adapted from ShapeNet [1].

Objects Bag Camera Car Guitar Jet Motorbike

Views 10 20 10 20 10 20 10 20 10 20 10 20
random 2.3 1.6 3.0 1.9 6.7 4.3 2.6 2.0 3.4 1.9 3.4 2.1

±0.3±0.1±0.2±0.1 ±1.6±0.4±0.0±0.4±0.2±0.0±0.3±0.1

even 2.3 1.6 2.9 1.9 6.6 4.3 2.6 1.9 3.2 1.9 3.5 2.1
±0.2±0.0±0.2±0.1 ±1.8±0.2±0.2±0.3±0.0±0.1±0.4±0.1

S-NeRF* 9.4 3.7 3.0 2.6 8.7 5.6 3.7 2.8 10.6 2.6 7.5 2.8
±10.3±2.1±0.1±0.0 ±5.9±2.3±0.9±0.8±13.1±1.2±5.3±1.1

RFE 2.7 1.6 3.0 1.9 7.6 4.4 3.1 2.0 3.1 2.0 4.3 2.1
±0.2±0.1±0.2±0.1 ±0.5±0.1±0.6±0.3±0.5±0.1±0.5±0.1

TABLE III: Distance validation errors, in percent, on 10 and
20 captured views in environments adapted from ShapeNet [1].

of K = 2 and a shared instant-ngp [25] architecture
for reconstruction and evaluation. The S-NeRF experiments
uses a TensoRF [24]-based re-implementation of the S-NeRF
formulation (denoted S-NeRF*), but only for uncertainty es-
timation and view selection; for fairness of evaluation, the
selected views are then used to train the same instant-ngp
architecture that are used for the other experiments.

VI. DISCUSSION

Despite its simplicity, we find that RFE consistently selects
views that improve photometric PSNRs more effectively than
baselines. Perhaps because it uses photometric disagreement
as a proxy for the information gain of a view, however, RFE
appears to select views at the cost of distance error.

Consistent with prior work [13], we observed that S-NeRF*
is effective in producing high quality uncertainty estimates
when provided a large number of input views; our implemen-
tation, however, fails to generalize to situations where only
a small number of views are available, as is the case in the
view planning setting. S-NeRF* underperforms compared to
random sampling strategies.

These insights, obtained via active-3d-gym, highlight
the utility of RFE as a method to tackle the view planning
problem for radiance fields. We hope to extend RFE to plan
views for radiance fields in physical robot embodiments.
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