
NeRF-Frenemy:
Co-Opting Adversarial Learning for

Autonomy-Directed Co-Design

Stanley Lewis, Bahaa Aldeeb, Anthony Opipari, Elizabeth A. Olson, Cameron Kisailus, Odest Chadwicke Jenkins1

Robotics Department
University of Michigan

Ann Arbor, Michigan 48109
Email: {stanlew, baldeeb, topipari, lizolson, kisailus, ocj}@umich.edu

Abstract—As the presence of robotics in industries such
as warehousing and manufacturing grows, the need arises to
optimize product design for downstream autonomous tasks.
For example, when considering object segmentation or pose
regression, minimizing featureless or symmetric regions of an
object can improve the quality of these estimations. Adding
visual fiducial markers can provide landmarks for these tasks,
however they can become warped on deformable packaging
or distract from designed branding of an object. To address
this gap, our proposed framework, NeRF-Frenemy, incorporates
techniques introduced by the adversarial machine learning com-
munity, but in a cooperative manner to improve the fidelity of
manipulation-focused perception tasks. NeRF-Frenemy optimizes
a neural radiance field (NeRF) representation of an object against
a given pre-trained perception model by seeking a minimal
perturbation to the implicit space. The resulting changes in
the objects’ appearance from these alterations to the implicit
space can be realized to a modified object appearance which will
improve the given model’s performance on the object. In this
work, we show an initial result of this approach on a member
of the YCB Dataset against the image segmentation portion
of the PoseCNN model. The project webpage is available at:
https://progress.eecs.umich.edu/projects/nerf-frenemy.

I. INTRODUCTION

As the commercialization of robotics in industries such
as grocery stores (Amazon Go), robotic warehouses (Ama-
zon/Kiva, Boston Dynamics, Fetch Robotics), and autonomous
truck driving (Tusimple, Waymo, Gatik) become more com-
mon, manufacturers will need to ensure their product de-
signs are compatible with both human and robotic users.
One solution is for commercial products to include fiducial
markers on their packaging, similar to the current utilization
of UPC barcodes in commercial environments. However, this
approach would interfere with branding: UPC’s can be placed
in discreetly while fiducial markers must be placed in visually
prominent locations around the product.

Our work reexamines the promise of slight modifications
to the product’s appearance to assist in these tasks, but by
creating these visual changes with the downstream network in
mind. This work is also inspired by modern computer-aided
product design workflows that utilize a topology optimization

stage to reduce material costs while ensuring physical perfor-
mance constraints are met. Analogously, NeRF-Frenemy seeks
to improve perception accuracy while minimizing material or
color modifications.

Deeply learned methods such as PoseCNN [17] have
demonstrated state-of-the-art performance on tasks such as
feature detection and pose estimation. In attempting to better
understand why deep learning models are performing well,
the concept of adversarial attacks was presented [14]. By
having access to a trained differentiable model one can
use gradient methods to alter model inputs rather than the
model’s parameters to dramatically decrease model perfor-
mance. In contrast, the present study does not aim to fool
a network as adversarial approaches do - instead, we utilize
counter adversarial approaches to make an object’s design
more compatible with task-specific differentiable estimators.
To allow for the redesign of an object, we use a NeRF as
a differentiable implicit representation. Using a NeRF allows
us to generate representative RGB-D renderings in a scalable
and differentiable manner. This representation facilitates direct
optimizations of the object’s geometry and color information
conditioned on a task-specific differentiable model.

II. RELATED WORK

A. Object Pose Estimation

Estimating the 6-DoF poses (position and orientation) of
objects in space is a crucial prerequisite for many robotic
manipulation tasks. To aid robotics systems with this task,
visual fiducial markers can be attached as physical tags to the
object as visual landmarks [11, 15, 8]. When regressing pose
without such markers, deep neural networks have achieved
state of the art accuracy performance and are commonly
applied in robotic manipulation settings [17, 2, 6, 13]. The
prevalence of deep neural networks for pose estimation mo-
tivates the present paper, which sets out to understand how
pose estimation performance can be improved by modifying
the objects themselves.
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Fig. 1. NeRF-Frenemy architecture diagram. The object geometry and initial coloring is encoded in the NeRF model, which then renders the object at
the ground truth pose. NeRF-Frenemy finds a minimal perturbation that maximizes the performance of a pre-trained model on a given task (e.g. object
segmentation)

B. Adversarial Examples

It has been shown that only minimal input perturbations
are required to produce large changes in neural network
inferences [14, 5]. These adversarial approaches have been
demonstrated to be able to bridge the sim-to-real gap and work
on physically deployed networks [3].

Although most of the work on adversarial attacks focuses on
classification, recent work demonstrates the benefit of adver-
sarial training for improving 6-DoF object pose estimation [19]
and human pose estimation [1, 7, 16].

This work co-opts the adversarial approach to instead use
gradients to influence the inputs constructively rather than
antagonistically. The goal is to minimally refine an object’s
colors or geometry in order to maximize performance against
a task-specific model.

C. 3D Object Representations

There are many different options for representing an object
in an implicit, differentiable manner. These options include
occupancy nets as in Mescheder et al. [9], deep signed distance
functions as in Park et al. [12], Neural Radiance Fields as in
Mildenhall et al. [10] or plenoptic voxel grids as in Yu et al.
[18]. This work utilizes a representation similar to FastNeRF
as proposed by Garbin et al. [4] in order to improve rendering
time.

III. METHOD

The proposed NeRFrenemy framework consists of three
primary components: a base NeRF capable of rendering the
original object, a perturbation NeRF containing the modifica-
tions to the original object, and a fixed a priori estimator we
seek to optimize against. We perform a forward render and
estimation pass followed by a backward pass to optimize the
perturbation NeRF as illustrated in Fig. 1.

While our method in theory could be applicable to any
differentiable estimator, we focus on PoseCNN due to its
general prevalence within the robotics community, access to
a high quality open source implementation with pretrained
models, and abundance of available data with which to test. In

particular, our study focuses on the image segmentation output
of PoseCNN.

A. Forward Pass

The purpose of the forward pass is to generate synthetic in-
put data for the task-specific estimator. NeRF-based renderers
operate against an implicit space by evaluating a multi-layered
perceptron network (MLP) conditioned on spatial location [x,
y, z] along with view azimuth and elevation [θ, ϕ] at various
locations along projected epipolar rays in order to produce
color and density [r̂, ĝ, b̂, σ̂] estimates. These estimates are
then combined to produce per-pixel color and depth estimates
via the volumetric rendering function. For a full description
of this process, see Mildenhall et al. [10].

In this study, we assume the task-specific optimization will
affect a single, known object in the scene. Thus, in our study
a single NeRF model is learned only of the object we seek to
optimize.

If background information is necessary for the task-specific
estimator (G(·)) to function (which is the case for PoseCNN),
then the rendering (Ĉ) can be composited onto an observation
C to produce Ĉcomp either by using the ground truth mask
Z from the original dataset that produced C, or by taking
only the pixels from Ĉ which contain depth information
(which serves as an estimate of Z). Because we intend to
perform optimization against a perturbation and not the full
object, we need to utilize two separate NeRF renderers, one
which contains the base object’s geometry information (Fbase),
and another which contains the current perturbation state
(Fperturb). Fperturb is initially trained to produce zeros, so that
no perturbation is applied at the beginning of the optimization
process.

After the rendering is produced, it is fed through the
PoseCNN or other task-specific network G(Ĉcomp) to produce
the output prediction Ŷ , which for this work is a segmentation
of the input image.



Fig. 2. An example rendering from the trained NeRF prior to learning
perturbations.

B. Backward Geometry Modification

Subsequent to the forward pass, we optimize the per-
turbation network according to the loss function described
in Eq. (1). Ltask represents the loss function for the task-
specific model (e.g. intersection-over-union, Euclidean norm,
or another custom metric), ∥Ŷperturb∥ represents the Euclidean
norm of the perturbation NeRF’s output, and λ is a regular-
ization weight that is hand-tuned.

L(Ŷcomp, Ŷperturb, Y ) = λ ∗ ∥Ŷperturb∥+ Ltask(Ŷcomp, Y )
(1)

In essence, the goal of this loss function is to minimize
the loss on the task-specific model while simultaneously
minimizing perturbation magnitude. This approach is common
in adversarial learning, excepting that the chosen Ltask for
adversarial objectives is often chosen to be a loss towards an
incorrect answer, as opposed to the constructive one in this
work. The gradient of L is then calculated with respect to
the perturbation NeRF’s parameters, and passed to an Adam
optimizer for the update step.

IV. RESULTS

This section presents a preliminary result for the proposed
method. We initially train a FastNeRF style model on a soup
can using a subset of data from the YCB-Video Dataset which
contains no clutter affecting the soup can. No other efforts
were made to account for scene variances in lighting, pose
biases, or other known issues related to NeRF training. As
a result, the renderings of the can are not photo-realistic -
although they do remain recognizable as the relevant object
to a human. An example rendering of the can from the final
trained model is shown in Fig. 2.

After training, we selected an unseen frame from the YCB-
Video Dataset and allowed the proposed pipeline to perturb
only the [R,G,B] outputs of the base NeRF. This constraint
ensures that only the color information was changed by the
pipeline and not the geometry. Due to the memory limitations
associated with the RTX 3070 GPU used in this experiment,
it was not possible to perform a rendering of the entire soup
can object and perform optimization against the perturbation
NeRF. Therefore, N = 12000 epipolar rays were uniformly
randomly sampled from the ground truth segmentation mask,
Z, and composited onto the original YCB-Video frame. The
pre-trained model from PoseCNN for the soup can was used
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Fig. 3. (a) At iteration 0, the composited scene of the original coloring of
the soup can and (b) the corresponding segmentation output of the PoseCNN
model. (c) The scene at iteration 999 visualized with a proposed change in
coloring for the soup can from NeRF-Frenemy and (d) the new output of
the PoseCNN segmentation model based on the perturbed coloring. Note the
segmentation for the can, while previously missed completely, is able to be
partially produced.

for the task-specific model, in which the task-specific loss was
computed as shown in Equation 2, where Ẑ is the predicted
segmentation probability from the PoseCNN model, and i is
the indexing variable for a uniformly sampled pixel.

L(Ẑ) =

∑N
i=0(1− Ẑi)

N
(2)

In this experiment, the learning rate for the Adam optimizer
was set to 0.75 and λ was set to 1e − 6. The optimization
routine was run for 1000 iterations. Figure 3 shows the
composited renderings and segmentation visualizations for
the first and final iteration of the training process. In these
results, it is clear that the network is successfully optimizing
against the underlying PoseCNN network, as the object is
not detected at all initially outside of some false positives
by the mustard bottle, before being largely discovered by the
final iteration. However, the final perturbation values remain
very large (as evidenced by the final rendering looking very
different from the original can) so further loss formulation and
hyper-parameter tuning is required.

V. CONCLUSION

Preliminary experimentation has shown that NeRF-Frenemy
can yield renderings that improve on a chosen task’s perfor-
mance metric. Further work remains to be done to optimize
NeRF-Frenemy’s rendering fidelity, and also to ensure that this
approach can generalize sufficiently to bridge the sim-to-real
gap.
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