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Abstract— Motion optimization is an effective framework for gen-
erating smooth and safe trajectories for but it suffers from local
optima that hinder its applicability, especially for multi-objective tasks.
In this paper, we study the integration of Energy-Based Models
(EBM) as implicit priors for guiding optimizers. This work presents
a set of necessary modeling and algorithmic choices to effectively
learn and integrate EBMs into motion optimization. We investigate
the benefit of smoothness regularization in the learning process that
benefits gradient-based optimizers. Moreover, we present a set of EBM
architectures for learning generalizable distributions over trajectories
that are important for the subsequent deployment of EBMs. Videos and
additional details are available at https://sites.google.com/
view/implicit-priors.

I. INTRODUCTION

Motion planning is a fundamental property for autonomous
robots to achieve task-specific goals. In the context of autonomous
robot manipulation, the trajectories, that a robot should execute,
should satisfy several constraints, e.g., approaching the goal while
avoiding collisions and joint limits. Naturally, a complex motion
plan can be viewed as a multi-objective optimization problem along
a specific time horizon. In this work, we study motion planning in
light of motion optimization methods [1]–[4].

Motion optimization is an inherently local optimization method
that relies on the initialization, iteratively making local updates at
every optimization step. Hence, due to the possible non-convexity
of the cost function, these optimization methods suffer from local
minima. Additionally, if the cost function is sparse, it might be
hard to get the proper information for reaching low-cost regions,
and therefore, the initial proposal may barely improve. A way to
avoid the local minima traps in trajectory optimization is to include
a set of handcrafted priors in the trajectory optimization [1], [2].
In a different vein, to capture the inherent multimodality of multi-
objective motion planning tasks, a line of work proposes to learn
trajectory distributions from data to guide the optimization process
away from local minima [5], [6].

In this work, we study the prior modeling using Energy Based
Models (EBM) [7] as implicit models [8] for motion optimiza-
tion. EBMs can be represented in arbitrary latent spaces (e.g.
task spaces), without the requirement of representing them in
the configuration space of the robot, as opposed to most explicit
learning from demonstration methods [5]. Additionally, due to
their exponential nature, EBMs can be easily combined, allowing
the composition of multiple priors, representing sub-tasks of the
manipulation task, into a single structured prior. We propose a
motion optimization framework using implicit prior functions that
are modular, learnable, differentiable, and composable. Using our
learned EBMs as priors, we can integrate multimodal information
that can bias and guide the optimization process towards finding a
feasible and smooth solution in complex tasks.
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(a) EBM for trajectories (b) Pouring Task

Fig. 1: Implicit trajectory distributions are learned from demonstrations us-
ing EBMs. These guide motion optimization to produce feasible trajectories
for new problems. (a) An obstacle avoidance energy function, with generated
optimal trajectories towards different goal locations. (b) A robot manipulator
using learned EBMs to pour a cup within a cluttered scene.

II. BACKGROUND

Trajectory optimization. Denoting the system state at time t to be
xt ∈ Rd, we can define a discrete-time trajectory as the sequence
τ ≜ (x0,x1, ...,xT−1,xT ) over a planning horizon T . For a
given start-state x0, trajectory optimization aims to find the optimal
trajectory τ ∗ which minimizes an objective function c(τ ,x0):

τ ∗ = argmin
τ

c(τ ,x0,xg) (1)

Summarizing the context parameters of the planning problem as
E = [x0,xg, ...]

⊤, the objective function can also be written
more generally to include any number of cost terms: c(τ , E) =∑

i ci(τ , E). Gradient-based strategies for trajectory optimization
typically resort to second-order iterative methods similar to Gauss-
Newton [4], [9], or use pre-conditioned gradient-descent [1] to
find a locally optimal solution to the objective. On the other
hand, sampling-based approaches resort to stochastics generation of
candidate trajectories using a proposal distribution. These samples
are then evaluated on the objective and weighted according to their
relative performance [2], [10].
Planning as inference. The duality between probabilistic infer-
ence and optimization for planning and control has been widely
explored [4], [11], [12]. With open-loop trajectory optimization, in
particular, we view the trajectory τ as a random variable and first
consider the target distribution:

p(τ ; E) = 1

Z

∏
i

pi(τ ; E) (2)

where each pi term consists of an individual probability factor.
Optimization can then be formulated as a maximum-likelihood
estimation (MLE) problem, where we seek to find τ ∗ =
argmaxτ p(τ ; E). This can be done by minimizing the negative-
log of the distribution:

τ ∗ = τMLE = argmin
τ

− log
∏
i

pi(τ ; E) (3)

Assuming that these probability densities belong to the exponential
family, we can relate them to the previous cost terms: pi(τ ; E) ∝
exp(−ci(τ ; E)). Substituting these into Eq. (3) recovers Eq. (1).
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Fig. 2: Learned EBM (blue) and its gradient (orange) in a 1D dataset.
(Left) EBM trained with vanilla CD. (Right) EBM trained with CD loss +
denoising regularizer (6).

III. METHOD

Given a new context E , performing inference over the posterior
distribution in Eq. (2) and Eq. (3) requires that we define a
prior distribution of trajectories, p(τ ; E). Given a dataset D =
{τj , Ej}j=1:N , we propose to model and learn such prior trajectory
distributions from collected data. We define this distribution as an
EBM:

pθ(τ |D; E) = 1

Z
exp(−Eθ(τ , E)). (4)

with model parameters θ. In practice, E represents the planning
contexts, e.g., goal targets, obstacles positions, trajectory phase, etc.
The dataset D may consist of a collection of expert demonstrations
on different environments, and we aim to fit a density function
representing the data distribution with Contrastive Divergence (CD)
objective [13]. While the learned prior distribution is based on a set
of demonstrations, we desire to adapt to novel scenarios beyond the
demonstrated examples. Notably, instead of learning a monolithic
EBM-based prior, we can factor this prior distribution depending
on various aspects of the problem:

pθ(τ |D; E) ∝
∏
i

exp(−Eθi(τ , Ei)). (5)

Such a factored distribution allows us to leverage composability,
learn modular EBM factors independently, and combine them as
needed for novel scenarios and planning problems [14]. Further-
more, to properly deploy the CD loss to learn trajectory distributions
for motion optimization, we need to make multiple algorithmic and
modeling choices. In the following, we introduce a set of proposed
choices to properly learn and represent high-dimensional, long-
horizon multimodal trajectory distributions via EBMs that can be
beneficial for their deployment in motion optimization.
Smoothing EBMs for gradient-based optimization. To deploy
EBMs in motion optimization, we need a smooth energy landscape.
However, the CD objective generates an energy landscape with
multiple plateaus, with high energy values in regions where there
are no data and a plateau of low-energy in the regions of the data
points. While the energy landscape may capture well the distribution
of the demonstrations, it might not be helpful for gradient-based
sampling or optimization, with gradients close to zero in the
plateau and high gradients in the cliffs (Fig. 2). We propose adding
a denoising score matching loss [15], [16] as regularization to
smoothen the energy landscape and improve gradient information.
Denoising score matching first generates a noisy sample given a
data sample x̃ ∼ p(x̃|x) = N (x|σ2I), as x̃ = x + σϵ, with
ϵ ∼ N (0, I), and, then, matches the score function, ∇xEθ to
denoise the sample x̃ back to x

LDSM = EpD(x,E)Ep(x̃|x)

[
||ϵ−∇xEθ(x̃, E)||22

]
. (6)

The loss (6) encourages the gradient of the EBM to point towards
the data distribution contrarily to the CD loss.
Task-specific EBMs for Motion Optimization Here, we introduce
a set of model choices to represent EBMs for motion optimization,
as making proper choices on the EBM architecture improves the
data representation capacity and the generalization of the learned
models.

Object-centric EBMs. Learning task-conditioned motion models is
a vital tool for representing task-adaptive motion behaviors. In our
work, we propose to learn object-centric EBM that are useful for
representing desired movements in manipulation tasks that involve
objects, conditioning the learned EBM on the objects’ poses.
Phase-conditioned EBM. The usability of phase-conditioned priors
for motion optimization is necessary for long-horizon tasks, as
with long-horizon trajectories, the dimension of the input space
increases, and the learning of an EBM in that space might be
challenging. Therefore, we propose the phase-conditioned EBMs:

p(x|α) ∝ exp(−Eθ(x, α)), (7)

with x the state and α being the phase. The phase represents a
continuous variable moving from 0 to 1, encoding the temporal
evolution of the manipulation task. The phase-conditioned EBM
represents the state-occupancy distribution for different instances
of the manipulation task. Nevertheless, the phase-conditioned EBM
lacks any temporal relation between temporally adjacent points,
generating non-smooth trajectories. To confront this effect, we pro-
pose combining phase-conditioned EBMs with trajectory smoothing
costs to represent smooth trajectory distributions:

p(τ ) ∝ exp

(
−
∑
k

Eθ(xk, αk) + (xk − xk+1)
2

)
. (8)

Although we may be able to learn data-driven prior distributions,
as described in the previous section, we still require reliable
inference and optimization methods to derive optimal trajectories
τ ∗ given a new planning problem expressed by E . In the following,
we present the methods for evaluation and inference on learned
EBMs for trajectory distributions. This includes techniques for
sampling and optimization which account for the composability of
our EBM functions, as well as a stochastic trajectory optimization
method suited for the planning tasks considered here.
Structured Planning Priors. Since we cannot sample from EBMs
directly, we need to initialize samples by first drawing from an
initial distribution, and then perform sequential updates to ap-
proximate the relevant modes. Further, learning task-specific EBM
model-components is useful for portions of the objective function
which are hard to define. However, we may insist on biasing
our sampling given the structure of the planning problem, and
incorporate known, well-defined requirements such as goal-seeking
behavior and smoothness. This can be addressed by incorporating
relevant distributions which are known a-priori, to the contextual-
prior in Eq. (4)

pθ(τ |D; E) ∝ p0(τ ;µs,µg)
∏
i

exp(−Eθi(τ , Ei)), (9)

where p0(τ ;µs,µg) is a general trajectory-based prior, which is
typically a Gaussian Process (GP) prior representing the space of
smooth and continuous-time trajectories [4], [17]. Similarly to [4],
[18], we can directly integrate goal-reaching and smoothness into
this distribution, which can then be directly sampled to initialize
optimization. In practice, we can efficiently generate large quantities
of these time-correlated trajectories due to our parallelized GPU
implementation. Note, however, it is intractable to incorporate
explicit priors on behaviors such as obstacle avoidance, for example.
Hence, in practice we must resort to a combination of implicit and
explicit priors to generate feasible trajectories from Eq. (9).
Stochastic Trajectory Optimization with GP-Priors. We can
iteratively update the time-correlated sampling prior, described in
the previous section, to fit the modes of a learned EBM and



Fig. 3: Learned obstacle-EBMs conditioned on novel obstacle locations.
(Left) free-space point sampling and (right) expert trajectory distributions,
with multi-goal planning solutions depicted by blue trajectories. Discontinu-
ities and implicit obstacle surfaces are well captured using sparse free-space
point-samples during training, whereas distributions of trajectory-based
demonstrations can be captured neatly by the EBMs. The latter provides a
convenient “guiding” energy function for a new context, improving samples
derived from multi-modal stochastic trajectory optimization.

allow us to sample optimal trajectories in a new planning context.
The optimizer, which we call Stochastic Gaussian Process Mo-
tion Planning (StochGPMP), is closely related to the importance
sampling scheme used by CEM and MPPI but uses goal-directed
GP distributions. We refer the reader to link stated in the abstract
for details on the derivation and specific update procedure. When
used in our experiments, we select to update the mean of each
component GP in the distribution. This can be easily performed in
configuration space, although it requires an initial goal configuration
to be approximated using Inverse-Kinematics.

IV. EXPERIMENTAL EVALUATION

Experiment I: Simulated Planar Navigation. In this setting, a
holonomic robot must reach a goal location while avoiding obsta-
cles in a planar environment. We assume that the start, goal, and
obstacle locations are known for a given planning problem, but the
obstacle geometries (ex. size, shape) are unknown. We want to learn
an implicit distribution that captures the collision-free trajectories
which lead to a particular goal. Here, we investigate two possible
sources of empirical data: (1) sparsely populated point-distributions
in free-space and (2) a set of expert trajectory distributions. Here,
the learned EBM can be expressed as Eθ(x, {xi

obs}Ni=1), where x
is a particular 2D-state, and xobs the position of an obstacle (here,
N = 3). The model is a simple 2-hidden layer MLP (width=512),
with concatenated inputs.

Examples of the learned EBM for both cases are shown in
Fig. 3. The resulting energy functions, in either case, manage to
effectively capture the demonstration distributions, conditioned
on new obstacle locations. We compare this method of implicit
trajectory generation to a standard Behavioral Cloning (BC)
baseline, where the learned policy outputs the current velocity,
q̇ = f(q;Xo,xg) which is conditioned on the set of obstacle poses
Xo = {xo} and the goal location xg . We perform a quantitative
analysis on the EBM methods by measuring the success rate on
the validation set as a function of optimization iterations needed
by the planner (Table I).

Opt. iters. 0 5 10 25 50
EBM-Free-space 0.556 0.470 0.643 0.747 0.852

EBM-Expert Traj. 0.556 0.690 0.791 0.847 0.877

Behavioral cloning 0.04 – – – –

TABLE I: Planar navigation: Average success rate per environment, as
a function of optimization iterations. A planning trajectory is deemed
successful if it ends within a radius of 1.5 from the goal, without hitting
the underlying obstacles.

Experiment II: Robot pouring amid obstacles. We investigate
the integration of EBMs in trajectory optimization for a pouring
task in the presence of obstacles with a 7dof LWR-Kuka robot
arm, showing its effectiveness in complex manipulation tasks. This
experiment investigates (i) the benefit of including smoothness
regularization in the EBM training, (ii) the advantages of phase-
conditioned EBM w.r.t. learning the EBM in trajectory space, and
(iii) the generalization of our EBMs in the context of the pouring
task regarding arbitrary pouring places, and in the presence of
obstacles. Instances of our method’s performance are available in
Fig. 4 for the simulated task, and Fig. 1 for our zero-transfer to the
actual robotic setup. To learn the pouring EBM, we recorded 500
trajectory demonstrations of the pouring task. The demonstrations
were generated using a set of handcrafted policies and were
initialized in arbitrary initial configurations. To properly encode
the temporal information in the data, we learn a time conditioned
EBM, Eθ(x|α). In our problem, x is a 6-dimensional state,
representing the 3D position of the bottom and tip of the glass
w.r.t. the pouring pot frame. Centering the EBM to the pouring
pot’s frame allows us to generalize the EBM to arbitrary pot
poses. Additionally, we include the denoising regularization and
compare its performance and compare to a baseline without the
proposed regularization. We compare against three baselines. First,
a solver without any prior, to appropriately evaluate the benefits of
adding guiding priors. Second, a phase-conditioned EBM without
smoothness regularization combined with the optimizer. Third, an
EBM that is directly learned in the trajectory space to investigate
the benefit of phase-conditioned EBMs in trajectory optimization.
The objective function is defined by the composition of a set of
cost functions–fixed initial configuration, fixed target configuration,
trajectory smoothness, obstacle avoidance, keep the glass pointing
up to avoid spilling and pour inside the pot. The learned EBM
is added as an additional factor in the optimization problem. We
optimize using a tempering scheme, giving more importance to the
prior at the beginning and reducing its influence at the end of the
optimization process. We report performance both in obstructed and
obstacle-free environments. We run 50 episodes for each case. we
randomize the position of the pouring pot and the obstacles on each
episode. The obtained results are presented in Fig. 5.

Fig. 4: A visual representation of the pouring in cluttered task.

Fig. 5: Success rate (%) for the pouring task. (Left): Experiment without
collision obstacles. We observe that the phase EBM with regularization
can improve the performance slightly. (Right): Experiment with obstacles
in the environment. We observe a clear benefit of using phase-based
EBM in contrast with trajectory-based EBM. Training the EBM in high
dimensional space requires too many samples, and it is difficult to get
smooth EBMs representing the demonstrations. The EBM trained with
regularization improves the obtained results with respect to non-regularized
EBM due to informative gradient towards the demonstration region.
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