
Implicit Object Mapping With Noisy Data
Jad Abou-Chakra

QUT Centre for Robotics
Queensland University of Technology

Brisbane QLD, Australia, 4000
jad.chakra@hdr.qut.edu.au

Feras Dayoub
School of Computer Science

University of Adelaide
Adelaide SA, Australia, 5005
feras.dayoub@adelaide.edu.au

Niko Sünderhauf
QUT Centre for Robotics

Queensland University of Technology
Brisbane QLD, Australia, 4000
niko.suenderhauf@qut.edu.au

Abstract—Modelling individual objects as Neural Radiance
Fields (NeRFs) within a robotic context can benefit many down-
stream tasks such as scene understanding and object manipu-
lation. However, real-world training data collected by a robot
deviate from the ideal in several key aspects. (i) The trajectories
are constrained and full visual coverage is not guaranteed –
especially when obstructions are present. (ii) The poses associated
with the images are noisy. (iii) The objects are not easily isolated
from the background. This paper addresses the above three
points and uses the outputs of an object-based SLAM system
to bound objects in the scene with coarse primitives and – in
concert with instance masks – identify obstructions in the training
images. Objects are therefore automatically bounded, and non-
relevant geometry is excluded from the NeRF representation. The
method’s performance is benchmarked under ideal conditions
and tested against errors in the poses and instance masks.
Our results show that object-based NeRFs are robust to pose
variations but sensitive to the quality of the instance masks.

I. INTRODUCTION

Robots that construct semantically meaningful maps rich
with geometric data can better facilitate decision making and
control tasks [7, 5, 3]. Creating geometrically expressive object
representations that would populate such a map is a critical
stepping stone towards increasing the utility and flexibility
of robots [7, 4, 10]. Neural Radiance Fields (NeRFs) [8]
are recent advancements in implicit representations that have
become popular due to their remarkable success on the view-
synthesis task. In this paper, we show how NeRFs can be
used as object rather than scene representations and analyze
their sensitivity to noisy and constrained input typical of
robotic applications. We demonstrate that NeRFs are a natural
extension to object-based SLAM systems and that they are
complimentary – object-based SLAM provides tractability and
NeRFs provide accuracy. NeRFs are neural networks that are
trained with posed images and represent a manually configured
area with high fidelity. In contrast, object-based SLAM lacks
geometric fidelity but is capable of quickly associating input
images with poses and automatically detecting areas of interest
in a scene. Using the two systems in concert to remove the
disadvantages of either is the approach we take in this paper.
We present such a method and investigate how well it performs
under constraints and noise typical in robotic contexts.

II. METHOD

We assume the presence of an object-based SLAM system
that localises the camera, identifies objects in the scene, and
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Fig. 1. We generate a neural radiance field (NeRF) with a hash encoding
(Instant NGP) for each object in the scene. We use noisy instance masks and
loose bounding boxes – assumed to be provided by an object-based SLAM
system – to bound each NeRF and isolate the object from its background. A
scene with 4 objects can thus be decomposed into 4 NeRFs, each representing
the geometry of a single object.

bounds them using a course primitive. We present a method
that extends this system and enriches its representation of
objects through the use of Neural Radiance Fields (NeRFs).
We use the hash encoding from [9] to make training and
inference as fast as possible. Given a set of images Ii and
their corresponding poses Xi, depth maps Di, and instance
masks Si, we construct a single NeRF for every object j
present in the scene – Figure 1. A ray r that intersects an
image plane i at a pixel coordinate (u, v) is associated with
the color cgt(r) = Ii(u, v), the depth dgt(r) = Di(u, v), and
the instance ID Si(u, v).

The object-centric nature of the task presents two challenges
that do not appear when mapping whole scenes. The first
challenge is bounding the NeRF to an area so that its rep-
resentational power can be focused on the object of interest.
In this, we rely on the object-based SLAM system to provide
a bounding box Bj that loosely contains the object. We use a
ray-box intersection algorithm to ignore rays that do not pass
through the bounding box and to limit sampling to the points
therein.

The second challenge is to isolate that object in the presence
of clutter. The aim is to construct the object while suppressing



Fig. 2. Each training image can be decomposed into three regions through
which rays are cast: (i) Rays cast through the positive region – shown as
green – represent the object and have their computed color optimized towards
the groundtruth color in the image. (ii) Rays cast through the negative region
– shown as orange – represent the background and are optimized towards a
zero density distribution. (iii) Rays cast through the masked region – shown
in pink – represent possible obstructions and are not included in the training.

any other geometry around it. Rays Rp that are known to
hit the object should encourage geometry to be formed along
them. Conversely, rays Rn that do not hit the object should
discourage it. Rays Rm that are obstructed from hitting the
object by another are not included in the training because their
groundtruth values are not known – the colors that correspond
to them are not of the object of interest but rather of the
object that is obstructing it. Therefore, rays are cast from
each training image through three different regions (illustrated
in Figure 2): (i) the negative region – corresponding to the
background – that discourages geometry formation, (ii) the
positive region – corresponding to the object – that promotes
it, and (iii) the masked region – corresponding to potential
obstacles – that does neither. This method assumes that the
geometries obstructing the training views are recognized by
the instance masks and the object-based SLAM systems.

Our photometric loss is formulated as:

Lrgb =
∑
r∈R

∥ergb(r)∥2 (1)

where

ergb(r) =


Ĉ(r)− cgt(r) if r ∈ Rp

Ĉ(r)− crandom if r ∈ Rn

0 if r ∈ Rm

(2)

R is the set of all rays that pass through the training images.
cgt(r) is the color of the pixel in the training image that the
ray r intersects. crandom is a vector drawn from a uniform
distribution U(0, 1).

In some experiments, we show how depth supervision
affects the results. In those cases, the depth loss is given as:

Ldepth =
∑
r∈Rd

|edepth| (3)

where

edepth(r) =

{
D̂(r)− dgt(r) if r ∈ Rp and TN < 10−4

0 otherwise
(4)

Rd is the set of rays for which groundtruth depth informa-
tion is available. The method is not sensitive to the empirically
chosen threshold condition TN < 1e−4.

Joint Optimization: The learnable parameters Φ of the
NeRF framework and the poses X of the cameras are jointly
optimized.

Φ∗, X∗ = argmin
Φ,X

Lrgb + wdepthLdepth (5)

III. EVALUATION

Metrics In contrast to those works that use NeRFs for
novel view synthesis, we evaluate primarily on the accuracy
of the geometry rather than that of the color. We differentiate
between areas which have been correctly categorized as part
of the object of interest and areas which have not. For
correctly categorized areas, we use the mean average depth
error (MAE) between the groundtruth and rendered depth
maps to measure accuracy. We also use an intersection-over-
union (IoU) between the ideal and rendered instance masks
to measure how much of the total shape is represented in the
NeRF.

Fig. 3. Real scene shown on the right and its synthetic counterpart shown
on the left.

Fig. 4. Renders from four object NeRFs extracted from a real scene show
various geometry artifacts that may be due to insufficient view coverage, noisy
instance masks, and inaccuracies in the poses. The training data is taken from
a constrained trajectory and instance masks are produced by MaskRCNN.
Depth supervision is not used in this example. Large simple geometries –
as seen in the laptop and book renders – are reconstructed more accurately
than their counterparts. In general, the objects are well-isolated from their
background, however attributing the artifacts to different sources of error is
difficult in real scenes. This begs the question: “To what extent does each
noise factor contribute to imperfections in the NeRF?”

The method is run on the real scene shown in Figure 3 and
qualitative data is collected and shown in Figure 4. A camera
is used to capture 100 images along a constrained trajectory. In
the absence of a robust open-source implementation of object-
based SLAM, loose bounding boxes are manually estimated
around objects. Image poses are estimated with a SLAM
system [1] and instance masks are generated by MaskRCNN
[6]. Because groundtruth data is unavailable when using real-
world data, it is difficult to quantitatively assess the method



TABLE I
EFFECT OF NOISY DATA AND DEPTH SUPERVISION ON THE

RECONSTRUCTION OF OBJECTS FROM A CONSTRAINED TRAJECTORY.

Masks Depth Poses Depth MAE (cm) IoU (%)

Ideal True Ideal 0.5± 0.3 98± 1.5
True ORB-SLAM 0.6± 0.3 98± 0.6
False Ideal 1.1± 0.3 98± 0.8
False ORB-SLAM 1.4± 0.3 98± 1.1

MaskRCNN True ORB-SLAM 1.2± 0.1 85± 5.8
Ideal 1.3± 0.2 85± 7.4

False ORB-SLAM 2.3± 0.4 83± 6.3
Ideal 2.3± 0.4 82± 7.8

and to understand which sources of error are contributing
negatively to the reconstruction. Therefore, we replicate the
real scene in Blender [2] – Figure 3 – and measure the
reconstruction quality of the object NeRFs under various con-
ditions. The affects of using depth supervision, ORBSLAM,
and MaskRCNN on the synthetic scene with a constrained
camera trajectory are shown in Table I. We observe that most
of the error is due to the use of MaskRCNN.

0.6m

Fig. 5. Training images are generated from a camera looking at the center
of the table and placed on the sphere shown. The four table-top models
“bluebell”, “laptop”, “book”, and “cup” are used to calculate confidence
intervals.

To further analyze the relationship between noise in the
instance masks and poses, we construct ideal scenes of the four
objects using well distributed viewpoints – Figure 5. Three
experiments are conducted. In the first experiment, we show
how object NeRFs perform under ideal conditions. The results
in Figure 7 reveal that the reconstruction quality plateaus to
a baseline of approximately 0.6cm as the number of training
views increase. With the baseline calculated, the second ex-
periment progressively adds noise to the ideal instance masks
used in training. Noise is introduced by removing or adding
patches to the mask border until a desired IoU is met. The
outputs of this process are shown in Figure 6. The results of the
second experiment – Figure 8 – confirm that object NeRFs are
sensitive to the quality of the instance masks. Increasing the
number of images in the training set alleviates that sensitivity
to some degree. The final experiment – Figure 9 – adds noise
to the poses of the camera and shows that object NeRFs have
a remarkable resilience to rotational and translational errors.
On the scenes tested, deviations of up to 2 cm of translation
and 3◦ of rotation can be tolerated – which is inline with what
is expected from SLAM systems.

100 % 94 % 87 % 81 %

Fig. 6. Example outputs from the instance noise generator. This is used to
controllably introduce noise unto ideal instance masks and analyze its affect
on the NeRF reconstruction. The numbers shown are the intersection-over-
union of the resultant mask relative to the groundtruth.
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Fig. 7. NeRFs – representing one of four tabletop objects placed in an
indoor scene – are trained from an increasing number of well-distributed
posed images with groundtruth instance masks. The images are taken from
the top half of a sphere with radius 0.6m and 1.1m. Depth supervision is
enabled for two of the experiments. The tabletop objects can be reconstructed
with an accuracy under 1 cm at 98% IoU. The number of training images
has a diminishing effect on the quality of the recontruction whereas depth
supervision gives an overall increase in accuracy (< 0.5 cm at 98% IoU).
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Fig. 8. Well-distributed images with groundtruth poses and noisy instance
masks are used to reconstruct the same tabletop objects from the baseline
experiment. The reconstruction quality deteriorates quickly with increasing
noise levels. Depth supervision is more effective than increasing the number
of training images at slowing the deterioration.
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Fig. 9. Well-distributed images with ideal instance masks and inaccurate
poses are used to reconstruct the same tabletop objects from the baseline ex-
periment. Translation and rotation errors are treated separately. The resilience
to either is shown when depth supervision is included and when the extrinsics
– labelled “Extr” in legend – are allowed to be optimized.

IV. CONCLUSION

NeRFs are exciting representations that can be used to
extend current object-based SLAM systems. The two are
structurally and functionally symbiotic. In this work, we saw
that object NeRFs are robust to noise in the extrinsics but
not robust to noise in the instance masks. Future work should
address the ability of NeRFs to deal with this kind of noise
which is characteristically not consistent in 3D.
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