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Abstract—We propose to represent objects as image-
conditioned neural implicit functions and to model manipulation
constraints on top of such implicit functions. The proposed
framework, which we call Deep Visual Constraint, acts as as
a perception component in the whole manipulation pipeline,
enabling long-horizon planning only from visual input. Project
page: https://sites.google.com/view/deep-visual-constraints

I. INTRODUCTION

Manipulation planning is a type of motion planning problem
that computes not only the robot’s own movement but also
objects’ motions subject to interaction constraints. At the core
of robot’s dexterity and generalization capability is designing
interaction constraints which describe how the robot should
interact with objects in a plausible way, such as grasping and
placing an object, or more general tool-use.

Traditional constraint models, or constraint features, for
manipulation planning were built upon geometric object rep-
resentations such as meshes or combinations of shape prim-
itives representing its shape in conjunction with its pose in
SE(3). However, this traditional approach places a number
of limitations on its perception and generalization: (i) The
representations have to be inferred from raw sensory inputs
like images or point clouds – raising the fundamental prob-
lem of perception and shape estimation. (ii) With increasing
generality of object shapes and interaction, the complexity of
representations grows and hand-engineering of the interaction
features becomes inefficient. However, if the aim is manipula-
tion skills, the hard problem of precise shape estimation might
be unnecessary to predict accurate interaction features.

Inspired by recent advances in 3D modeling, e.g. NeRF [7],
we propose a data-driven approach to learning interaction
features that are conditioned on object images. The whole
constraint model is trained end-to-end directly with the task
supervisions so as to make the representation and perception
task-specific and thus to simplify the interaction prediction.
The object representation, which we propose to be a d-
dimensional neural implicit function over the 3D space, acts
as a bottleneck and is shared across multiple features so
that the task-agnostic aspects can emerge. In particular, this
implicit function over 3D is associated with the 2D images
from multiple cameras (e.g. stereo) via the known camera
geometry. We demonstrate that integrating the learned con-
straint models into Logic-Geometric Programming (LGP) [12]
enables computing dexterous manipulation plans involving
various interactions with complex-shaped objects. Since the
representations generalize well, the learned constraint models
are directly applicable to manipulation of unseen objects.
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Fig. 1: PIFO

II. DEEP VISUAL CONSTRAINTS

A. Pixel-Aligned Implicit Functional Object (PIFO)

Given Nview images with their camera poses/intrinsics,
V = {(I1,T 1,K1), ..., (INview ,TNview ,KNview)}, the proposed
implicit object representation is a mapping:

ψ(p;V) = y, (1)

where p ∈ R3 and y ∈ Rd are a queried 3D position and a
representation vector at that point, respectively. This implicit
function, implemented as a neural network as depicted in
Fig. 1, consists of three parts: (i) Image Encoder transforms
a color image to a feature image. We adopted the hourglass
network architecture architecture [10] so as to capture both
local and global information in the image, i.e.,

Fn = UNet(In), ∀n ∈ {1, ..., Nview}. (2)

(ii) 3D Reprojector first transforms a queried point p into
the image coordinate including depth, π(p;T ,K) = z ∈ R3

and then extracts the local image feature at the projected pixel
point via bilinear interpolation, which is then fed into a couple
of fully connected layers to compute a representation vector
for a single image, i.e., ∀n ∈ {1, ..., Nview},

yn =MLP (Fn(zn), zn), zn = π(p;T n,Kn). (3)

(iii) Feature Aggregator combines representation vectors
from multiple images simply by taking average, i.e., y =

1
Nview

∑Nview
n=1 yn.

B. Interaction Feature Prediction

An interaction feature is also a neural implicit function:

h = φtask(q;V), (4)

where q ∈ SE(3) is the pose of the robot frame interacting
with the object and h ∈ R is the interaction value which,
analogous to energy potentials, is zero when feasible and non-
zero otherwise. As shown in Fig. 2, the interaction feature
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Fig. 2: The interaction feature prediction scheme of DVC

Fig. 3: Key interaction points on the gripper and hook

predictions are made through the feature heads based on a set
of representation vectors obtained by querying the backbone
at a set of key interaction points. The keypoints are rigidly
attached to the robot frame to represent its pose (See Fig. 3)
and are used to query the backbone, i.e., ∀k ∈ {1, ...,K},

yk = ψ(pk;V), pk = R(q)p̂k + t(q), (5)

where p̂k is kth keypoint’s local coordinate, and R(q) and
t(q) denote the rotation matrix and the translation vector of
the frame’s pose q, respectively. The feature head then takes as
input the resulting representation vectors and predicts a feature
value through a couple of fully connected layers, i.e.,

h =MLP (y1, ...,yK). (6)

C. Training Data and Loss Function

We considered three types of interaction features: an SDF
feature for collision avoidance and grasping/hanging features,
and generated the corresponding dataset of posed images,
SDFs, Grasping and Hanging poses. Specifically, we took
131 mesh models of mugs from ShapeNet [2] and convex-
decomposed/randomly scaled those meshes. For each mug,
we generated 100 images (128× 128) with the corresponding
camera poses and intrinsic matrices, 12,500 3D positions
and their signed distance values following the approach of
DeepSDF [8], and 1,000 feasible grasping and hanging poses
of the gripper and the hook, respectively, in Bullet [3] or using
kinematics checking. In the end, we have

{(
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1:100

,p
1:12500

, SDF
1:12500

, q
1:1000
grasp , q

1:1000
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}131
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,

which we divided into 78 train, 25 validation and 28 test sets.
In each iteration of the network training, we first

choose a minibatch of mugs from which a subset of
augmented images with their camera poses and intrinsics,
V̂ = {(Î1, T̂ 1, K̂1), ..., (Î4, T̂ 4, K̂4)}, a subset of SDF
data,

(
p1:300, SDF 1:300

)
, and the grasping/hanging data,(

q̂1:100
task , d1:100task

)
, where q̂ is a random pose and d =

mini=1,...Ntask ||q̂ − qi
task||2 is its unsinged distance in SE(3)

to the set of the feasible poses, are sampled. The images
are encoded only once per iteration and then the SDF,
grasping, hanging features are queried at the sampled points

and poses. The overall loss is given as Ltotal = Lsdf +
Lgrasp + Lhang, where we used a typical L1 loss for SDFs,
i.e. Lsdf = 1

NSDF

∑NSDF
i=1 |φsdf(p

i) − SDF i|, and the sign-
agnostic L1 loss in [1] for grasping and hanging, i.e., ∀task ∈
{grasp, hang} Ltask = 1

Ntask

∑Ntask
i=1

∣∣∣
∣∣∣φtask(q̂

i
task; V̂)

∣∣∣− ditask

∣∣∣ .
The feature heads and the backbone are trained end-to-end.

III. SEQUENTIAL MANIPULATION PLANNING WITH DVC
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Fig. 4: Deep visual constraints for manipulation planning

The learned features are integrated into LGP [12] as dif-
ferentiable interaction constraints as shown in Fig. 4. First,
scene images are warped into the object-centric images by
the multi-view processing (see the full-text for details) and
the robot frame’s poses are computed from a robot joint
configuration via a forward kinematics engine. One core
concept of manipulation planning is the rigid transformations
of objects. For an object transformed by δq ∈ SE(3), we
define rigid transformations of the representation function as
T (δq)[ψ](·) = ψ

(
R(δq)T (· − t(δq))

)
or, equivalently, of the

interaction feature as: T (δq)[φtask](·) := φtask
(
δq−1·

)
. By

composing the forward kinematics with the feature as

Htask(x, δq) := (T (δq)[φtask] ◦ FK) (x), (7)

we have an interaction feature as a function of a robot joint
configuration x and object’s rigid transformation. Following
the procedure of LGP, given a discrete action sequence a1:K
and the corresponding symbolic modes s1:K with sK ∈ Sgoal,
we solve the geometric path problem over sequences of the
robot joint configurations x1:KT , x ∈ Rnx and the object’s
rigid transformations δq1:KT , δq ∈ SE(3)m where their
interactions are constrained by the learned DVCs.

IV. SUMMARY OF EXPERIMENTS

We refer the readers to the project page for a collection of
videos, the full text, as well as the available source code.

Ablation Study: We compared the proposed representation
with three baselines: (i) Global image feature that uses a
CNN to output global image features instead of using the
hourglass network and extracting pixel-aligned local features,
(ii) vector object representation that represents an object as a
finite-dimensional vector instead of an implicit function, and
(iii) SDF representation where the learned SDF feature serves
as object representation. Table I shows that, while the SDF
representation performs best in shape reconstruction, the task
performances of PIFO are significantly better than the others.
The SDF representation is especially worse in the hanging
task, which implies that SDFs along the line are not sufficient
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IoU Grasp+c (%) Hang+c (%)
PIFO 0.816 / 0.656 88.1 / 82.5 94.0 / 78.9
Glo. Fea. 0.697 / 0.581 82.7 / 75.7 91.2 / 78.2
Vec. Rep. 0.036 / 0.014 0.5 / 0.4 0.0 / 0.0
SDF Rep. 0.845 / 0.667 67.9 / 64.3 3.7 / 4.3

TABLE I: Individual Feature Evaluation (Training / Test)

(a) (b) (c)

Fig. 5: SDFs from (b) PIFO and (c) the global image feature model

for the feature prediction and our task-guided representation
simplifies the feature prediction. Notably, Fig. 5 depicts SDF
values of an unseen mug (with a complex shape handle)
predicted by PIFO and the global image feature model; the
pixel-aligned method allowed to capture more fine-grained
details whereas the global image feature model reconstructed
the handle shape as being more “typical”.

Sequential Manipulation: Once constraint models are
learned, various types of long-horizon manipulation plan can
be computed by combining them differently. Fig. 6 illustrates
some of such scenarios: (a) Single mug hanging that simply
combines two discrete actions (with the corresponding learned
constraints) [(GRASP, gripper, mug), (HANG, hook, mug)], (b)
the three-mug scenario having 6 discrete phases with [(GRASP,
gripper, mug1), (HANG, M hook, mug1), (GRASP, gripper,
mug2), (HANG, U hook, mug2), (GRASP, gripper, mug3),
(HANG, L hook, mug3)], and (c) the handover scenario where
two arms at different heights and the target hook is placed very
high, requiring two arms to coordinate a handover motion; the
corresponding discrete actions are [(GRASP, R gripper, mug),
(GRASP, L gripper, mug), (HANG, U hook, mug)].

Exploiting Learned Representation: Figs. 7 (a)-(c) visu-
alize three principal components of the image feature vectors.
It can be observed that each component represents a certain
property of the objects, such as inside vs. outside, handle
vs. other parts, or above vs. below. This enables the image-
based pose estimation which we call feature-based closest
point (FCP) matching, i.e., the problem of finding the relative
pose of a target mesh w.r.t. a model mesh, without defining
any canonical coordinate of the objects. We compared this
to the conventional iterative closest point algorithms on point
clouds from a depth camera or from a reconstructed mesh
(ICP/ICP2). As shown in Fig. 7(d), FCP outperforms ICP
(due to the local optima issue) and a further improvement
was observed when we used the FCP results as starting points
of ICP. The PCA result also implies that the semantics of the
representation are consistent across different objects, e.g. the
handle parts of different mugs have similar representations.
We therefore considered an image-based zero-shot imitation

(a) Single mug (b) Three-mug (c) Handover

Fig. 6: Sequential manipulation scenarios
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Fig. 7: Exploiting Learned Representation

scenario, where we manually designed the pouring motion
for one mug and stored the images of pre- and post-pouring
postures of the mug, Vpre = (Ipre,Tpre,Kpre) and Vpost =
(Ipost,Tpost,Kpost), respectively. For a new mug, we solved
LGP with [(GRASP, gripper, mug), (POSEFCP, Vpre, mug),
(POSEFCP, Vpost, mug)], where (POSEFCP, ·, ·) imposes the
FCP constraint at each motion phase. As depicted in Figs. 7
(e)-(g), the learned representation enables transferring motions
across different objects only using the posed images.

Real Robot Demo: To successfully apply the learned DVCs
to the real robot by closing the sim-to-real gap, we had to
extend training to a larger dataset. Specifically, we randomized
the material of mugs to get more diverse appearances by
adjusting metalness and roughness in PyRender [6]. More
extensive data augmentations, such as ColorJitter or Blur,
were also applied during training. At test time, we attached
RealSense D435 on one of the grippers and took 8 color
images from some predefined poses.

V. DISCUSSIONS

The idea of DVCs is not limited to color images as input.
Depending on the setting, e.g. whether reliable depth sensing is
available, point clouds also can be considered (as in [11]) using
a PointNet [9] encoder. Incorporating non-visual, like tactile,
input would be another exciting direction to explore. Fig. 7 im-
plies considering more diverse tasks and objects in our multi-
task learning would lead to more generalized representations
as well as synergies between individual feature learning; all
those task features don’t necessarily model physical interaction
feasibility for planning; e.g., they can also serve as a value or
energy function of a direct control policy and be trained via
imitation or reinforcement learning [5, 4].
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