
Neural Motion Fields: Encoding Grasp Trajectories
as Implicit Value Functions

Yun-Chun Chen1,2,∗ Adithyavairavan Murali1,∗ Balakumar Sundaralingam1,∗

Wei Yang1 Animesh Garg1,2 Dieter Fox1,3
1NVIDIA 2University of Toronto 3University of Washington ∗Equal contribution

Abstract—The pipeline of current robotic pick-and-place meth-
ods typically consists of several stages: grasp pose detection,
finding inverse kinematic solutions for the detected poses, plan-
ning a collision-free trajectory, and then executing the open-loop
trajectory to the grasp pose with a low-level tracking controller.
While these grasping methods have shown good performance on
grasping static objects on a table-top, the problem of grasping
dynamic objects in constrained environments remains an open
problem. We present Neural Motion Fields, a novel object repre-
sentation which encodes both object point clouds and the relative
task trajectories as an implicit value function parameterized by
a neural network. This object-centric representation models a
continuous distribution over the SE(3) space and allows us to
perform grasping reactively by leveraging sampling-based MPC
to optimize this value function.

I. INTRODUCTION

Current robotic grasping approaches typically decompose the
task of grasping into several sub-components: detecting grasp
poses on point clouds [13, 14], finding inverse kinematics
solutions at these poses, solving collision-free trajectories
to pre-grasp standoff poses and finally executing open-loop
trajectories from standoff poses to the grasp poses [8, 9]. By
inferring a finite discrete number of grasp poses, such an
approach neglects the insight that object grasp affordances
are a continuous manifold. While this approach has yielded
tremendous progress in bin-picking and grasping unknown
objects on a table-top, reactive grasping of unknown objects
in constrained environments remains an open problem.

Implicit neural representations [6, 7, 10] have emerged as
a new paradigm for applications in rendering, view synthesis,
and shape reconstruction. Compared to traditional explicit
representations (e.g., point clouds and meshes), implicit neural
representations can represent continuous signals at arbitrarily
high resolutions. Motivated by implicit neural representations,
we propose to learn a value function that encodes robotic task
trajectories using a neural network. Our key insight is to map
each gripper pose in SE(3) to its trajectory path length as shown
in Figure 1. To train the model, we generate synthetic data of
grasping process by using a prior grasp dataset [8] and planning
trajectories with a RRT [5] motion planner. Once the model
training is done, we cast the learned value function as a cost
and leverage the Model Predictive Control (MPC) [1] algorithm
to query gripper poses in SE(3) with cost minimization. This
allows us to generate a kinematically feasible trajectory that
the robot can execute to reach a grasp on the object.

We benchmark our method on the grasping task and report
the success rate. In addition, we evaluate our model in two

Grasping Motion

Fig. 1: We present Neural Motion Fields that learns a value function
that can be queried to generate grasping motion. We use separate
network weights for predicting path lengths and collisions.

settings: static object poses and dynamic object poses, and
provide ablation studies under various settings. In summary,
our contributions include

1) We propose Neural Motion Fields, a novel formulation
of the grasp motion generation problem in SE(3) as a
continuous implicit representation.

2) We show that this learned object-centric representations
allows reactive grasp manipulation using MPC [1].

II. PROBLEM STATEMENT

Value function learning for grasping. We are interested in
learning a model that can be used to plan a kinematically
feasible trajectory for the robot to execute to grasp an object.
Specifically, we cast this task as a value function learning
problem. We assume that we are given a segmented object
point cloud P ∈ RN×3, where N is the number of points in a
point cloud, and a gripper pose g ∈ SE(3). The value function
V (g, P ) describes how far the gripper pose g is from a grasp
on the object. We use the path length of a gripper pose to
represent the value function.

Gripper pose path length. As shown in Figure 2a, given a
trajectory {gi}ti=0, where g0 denotes the end pose (grasp pose)
and gt denotes the start pose, the path length of the start pose
gt (denoted as V (gt)) is defined as the cumulative sum of
the average distance between two adjacent gripper poses [16],
which can be expressed by

V (gt) =

t−1∑
i=0

1

m

∑
x∈M
‖(Rix+ Ti)− (Ri+1x+ Ti+1)‖, (1)

where Ri is the rotation of the gripper pose gi, Ti is the
translation of the gripper pose gi, m is the number of keypoints
of the gripper, and M is the set of keypoints of the gripper.



Grasp pose 𝑔!

Start pose 𝑔"
(a) An example trajectory. (b) Anchor grasps.

Fig. 2: (a) An example trajectory planned by RRT. Red represents
longer path length. Green represents shorter path length. (b) Visual-
ization of the selected anchor grasps.

III. NEURAL MOTION FIELDS

A. Learning from Grasp Trajectories

Given an object point cloud P and a gripper pose g, our
goal is to learn a model that approximates the value function
V (g, P ). We propose Neural Motion Fields, which consists of
two modules: a path length module and a collision module.
Path length prediction. As shown in Figure 1, the path length
module first takes as input the object point cloud P and uses the
point cloud encoder Epath-length to encode a feature embedding
fpath-length = Epath-length(P ) ∈ Rd, where d is the dimension of
the feature fpath-length. Then, the point cloud feature fpath-length
and the gripper pose g are concatenated and passed to the path
length prediction network Fpath-length to predict the path length
Vpred(g, P ) for the gripper pose g.1

To train the path length module, we adopt an `1 loss function,
which is defined as

Lpath-length = ‖Vpred(g, P )− Vgt(g, P )‖1, (2)

where Vpred(g, P ) denotes the predicted path length of the
gripper pose g and Vgt(g, P ) denotes the ground truth.

We visualize the learned value function using a cost map
visualization as shown in Figure 3. We show two cost maps. In
each cost map, we select a grasp pose. We keep the orientation
and vary the x and y positions of the grasp pose to compose
poses. We then query the path lengths of the composed poses
using the learned model. Each input pose is represented by a
point in R3 and is colored by its predicted path length (red
means longer path length, while green means shorter).
Collision prediction. Having the path length module alone is
insufficient as the model does not explicitly penalize collisions
between the gripper and the object of interest. To address this
issue, we develop a collision module as shown in Figure 1
(same input as the path length module, but mapped to a different
output using a different set of network weights).

Given an object point cloud P and a gripper pose g, the
collision module first uses the point cloud encoder Ecollision to
encode the point cloud feature fcollision = Ecollision(P ) ∈ Rk,

1The gripper pose g is first converted to a vector in R9 which is the
contatenatation of the 6D rotation representation [17] of g and the translation
vector in R3 of g. The 9D vector will then be concatenated with the point
cloud feature fpath-length for path length prediction.

Fig. 3: We visualize two cost maps of a box object. In each cost
map, we select a grasp pose. We keep the orientation, vary the x
and y positions, and query the path length of the composed gripper
pose using our model. Each gripper pose is represented by a point in
3D. Red represents longer path length (higher in z). Green represents
shorter path length (lower in z).

where k is the dimension of the feature fcollision. Then, the point
cloud feature fcollision and the gripper pose g are concatenated
and passed to the collision prediction network Fcollision to
predict the probability ppred(g, P ) of the gripper pose g being
in collision with the object.

To train the collision model, we adopt a standard binary
cross-entropy loss function, which is defined as

Lcollision = pgt(g, P ) log ppred(g, P )

+ (1− pgt(g, P )) log(1− ppred(g, P )),
(3)

where ppred(g, P ) is the predicted collision probability and
pgt(g, P ) is the ground truth.

B. Generating Grasp Motion

Given the path length value function represented by the path
length module and the collision value function represented by
the collision module, we formulate the grasp cost Cgrasp as

Cgrasp(gt, P ) = (1− V (gt, P )) + C(gt, P ), (4)

where V (gt, P ) is the predicted path length for the gripper
pose gt, C(gt, P ) is the collision cost of the gripper pose gt
computed by thresholding p(gt, P ) ≥ τ , τ is a hyperparameter,
and P is the object point cloud. In our work, we set τ = 0.25.

We then optimize the grasp cost Cgrasp along with the
cost Cstorm to ensure smooth collision-free motions using
STORM [1], which is a GPU-based MPC framework:

min
ẍt∈[0,H]

Cstorm(q) + Cgrasp (5)

Additional details on Cstorm is available in [1].

IV. EXPERIMENTS

A. Experimental Setup

Dataset. We experiment with four box objects from the dataset
provided by [8] and one bowl object from the ACRONYM
dataset [3]. We first subsample a set of 16 grasp poses around
the object using farthest point sampling as shown in Figure 2b.
We then apply a 180 degree rotation along the z-axis of the
gripper pose to get the flipped counterparts. The selected 32
grasps are then used as the goal poses for trajectory data
collection. We randomly sample a gripper pose with respect
to one of the goal poses and use the RRT [5] planner from
OMPL [12] to plan a trajectory between the two poses. We
note that our data generation pipeline is agnostic to the choice
of the motion planning algorithm and other planners are also



0 200 400 600 800 1000

Time steps

10

20

30

40

50
Ro

ta
tio

n 
er

ro
r

Method
5%
10%
100%

0 200 400 600 800 1000

Time steps

0

10

20

30

40

50

60

Tr
an

sla
tio

n 
er

ro
r Method

5%
10%
100%

Static Object Poses
0 200 400 600 800 1000

Time steps

5

10

15

20

25

30

35

Ro
ta

tio
n 

er
ro

r

Method
5%
10%
100%

0 200 400 600 800 1000

Time steps
0

10

20

30

40

50

60

Tr
an

sla
tio

n 
er

ro
r Method

5%
10%
100%

Dynamic Object Poses
Fig. 4: Ablation study on the number of trajectories. We show the rollout curves of our model trained on differnt numbers of trajectories.

TABLE I: Grasp success rate.

Method Bowl Box A Box B Box C Box D

Oracle 40% 100% 40% 30% 50%
Ours 30% 80% 40% 40% 30%

applicable. We use inverse kinematics to solve for the joint
angles for each waypoint returned by RRT and interpolate
between two adjacent joint angles to obtain denser waypoints
for each trajectory. For each object, we collect one million
trajectories. We further filter out trajectories where the start
gripper pose has a path length greater than a threshold φ = 1.0.
Implementation details. We implement our model using
PyTorch [11]. We use the ADAM [4] optimizer for model
training. We use DGCNN [15] to be our point cloud encoder.
The path length prediction network Fpath-length and the collision
prediction network Fcollision both consist of 20 fully connected
layers. The learning rate is set to 2×10−3 with a weight decay
of 1× 10−6. We train our model using eight NVIDIA V100
GPUs with 32GB memory each. The batch size is set to 32.
The number of points in a point cloud is set to 1,024. The
dimensions for the point cloud features fpath-length and fcollision
are both 512. The training time for both the path length module
and the collision module is around 7 days.

B. Evaluation on Grasping

Setting. For each object, there are 10 test cases. In each test
case, we initialize the object with a stable pose on the tabletop.
In each test case, we optimize over the learned path length
module and the collision module to find the minimum point
by leveraging sampling based optimization [1]. The optimized
gripper pose is then used as the grasp pose. We use STORM
pose reaching [1] to reach the grasp pose. We set the time
limit for each test case to 30 seconds.
Metric. We use the grasp success rate to evaluate performance.
Results. Table I reports the grasp success rate of the 5 objects.
Our model performs well on Box A, but achieves inferior
performance on all other objects. The inferior performance is
due to the collision between the finger tips of the gripper and
the object.

C. Ablation Study

Setting. We conduct two ablation studies: 1) static object pose
reaching and 2) dynamic object pose reaching. In the static
object pose reaching setting, we randomly sample an object
pose at the beginning of each episode and place the object at
the sampled pose. The object pose is kept static throughout
the episode. In the dynamic object pose reaching setting, we

0 200 400 600 800 1000

Time steps

5

10

15

20

25

30

35

40

Ro
ta

tio
n 

er
ro

r

Method
2 grasps
16 grasps
32 grasps

0 200 400 600 800 1000

Time steps
0

10

20

30

40

50

60

Tr
an

sla
tio

n 
er

ro
r Method

2 grasps
16 grasps
32 grasps

Fig. 5: Ablation study on the number of anchor grasps. We show
the rollout curves of our model trained on trajectories collected by
using differnt numbers of anchor grasps.
randomly sample an object pose and a velocity vector at the
beginning of each episode and place the object at the sampled
pose while the object is moving at the speed specified by the
velocity vector. In both settings, there are 50 episodes. Each
episode has 1,000 time steps. We run MPC with our model to
optimize the grasp cost in Equation (5) and execute the robot.
Metric. We follow [2] and compute the rotation error and
the translation error between the current gripper pose and the
closest grasp pose at each time step. The closest grasp pose
is the grasp pose that has the minimum path length from the
current gripper pose.
Ablation study on the number of trajectories. Figure 4
shows the rollout curves of our model trained on different
percentages of the collected dataset (i.e., 5%, 10% and 100%).
We observe that in both settings, training on the entire dataset
(i.e., 100%) achieves the best in both the rotation error and
the translation error.
Abaltion study on the number of grasp poses. Figure 5
shows the rollout curves of our model trained on trajectories
collected by using different numbers of anchor grasps (i.e., 2,
16 and 32 grasps) in the dynamic object pose reaching setting.
We observe that the model trained on trajectories generated
from 32 anchor grasps achieves the best performance and
converges faster in translation error than all other models.

V. CONCLUSIONS AND FUTURE WORK

We propose Neural Motion Fields, a novel object represen-
tation which encodes both object point clouds and the relative
task trajectories as an implicit value function parameterized
by a neural network. This object-centric representation models
a continuous distribution over the SE(3) space and allows us
to perform grasping reactively by leveraging sampling-based
MPC to optimize this value function. Through experimental
evaluations, we show that by training on more numbers of
anchor grasps and larger scale datasets results in superior
performance. In future work, we plan to train a single model
on more objects.



REFERENCES

[1] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan
Mousavian, Nathan D Ratliff, Dieter Fox, Fabio Ramos,
and Byron Boots. STORM: An Integrated Framework for
Fast Joint-Space Model-Predictive Control for Reactive
Manipulation. In CoRL, 2022. 1, 2, 3

[2] Silvia Cruciani, Balakumar Sundaralingam, Kaiyu Hang,
Vikash Kumar, Tucker Hermans, and Danica Kragic.
Benchmarking in-hand manipulation. IEEE Robotics and
Automation Letters, 2020. 3

[3] Clemens Eppner, Arsalan Mousavian, and Dieter Fox.
ACRONYM: A large-scale grasp dataset based on simu-
lation. In ICRA, 2021. 2

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2014. 3

[5] Steven M LaValle, James J Kuffner, BR Donald, et al.
Rapidly-exploring random trees: Progress and prospects.
Algorithmic and computational robotics: new directions,
2001. 1, 2

[6] Lars Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space.
In CVPR, 2019. 1

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view
synthesis. In ECCV, 2020. 1

[8] Arsalan Mousavian, Clemens Eppner, and Dieter Fox.
6-dof graspnet: Variational grasp generation for object
manipulation. In ICCV, 2019. 1, 2

[9] Adithyavairavan Murali, Arsalan Mousavian, Clemens
Eppner, Chris Paxton, and Dieter Fox. 6-dof grasping
for target-driven object manipulation in clutter. In ICRA,
2020. 1

[10] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape represen-
tation. In CVPR, 2019. 1

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library.
In NeurIPS, 2019. 3

[12] Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open
motion planning library. IEEE Robotics & Automation
Magazine, 2012. 2

[13] Martin Sundermeyer, Arsalan Mousavian, Rudolph
Triebel, and Dieter Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In ICRA, 2021. 1

[14] Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and
Dieter Fox. Goal-Auxiliary Actor-Critic for 6D Robotic
Grasping with Point Clouds. In CoRL, 2021. 1

[15] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 2019. 3

[16] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for
6d object pose estimation in cluttered scenes. In RSS,
2018. 1

[17] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in
neural networks. In CVPR, 2019. 2

https://arxiv.org/pdf/2104.13542.pdf
https://arxiv.org/pdf/2104.13542.pdf
https://arxiv.org/pdf/2104.13542.pdf
https://arxiv.org/pdf/2001.03070.pdf
https://arxiv.org/pdf/2011.09584.pdf
https://arxiv.org/pdf/2011.09584.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
https://arxiv.org/pdf/1812.03828.pdf
https://arxiv.org/pdf/1812.03828.pdf
https://arxiv.org/pdf/2003.08934.pdf
https://arxiv.org/pdf/2003.08934.pdf
https://arxiv.org/pdf/2003.08934.pdf
https://arxiv.org/pdf/1905.10520.pdf
https://arxiv.org/pdf/1905.10520.pdf
https://arxiv.org/pdf/1912.03628.pdf
https://arxiv.org/pdf/1912.03628.pdf
https://arxiv.org/pdf/1901.05103.pdf
https://arxiv.org/pdf/1901.05103.pdf
https://arxiv.org/pdf/1901.05103.pdf
https://arxiv.org/pdf/1912.01703.pdf
https://arxiv.org/pdf/1912.01703.pdf
https://ieeexplore.ieee.org/document/6377468
https://ieeexplore.ieee.org/document/6377468
https://arxiv.org/pdf/2103.14127.pdf
https://arxiv.org/pdf/2103.14127.pdf
https://arxiv.org/pdf/2010.00824.pdf
https://arxiv.org/pdf/2010.00824.pdf
https://arxiv.org/pdf/1801.07829.pdf
https://arxiv.org/pdf/1801.07829.pdf
https://arxiv.org/pdf/1711.00199.pdf
https://arxiv.org/pdf/1711.00199.pdf
https://arxiv.org/pdf/1812.07035.pdf
https://arxiv.org/pdf/1812.07035.pdf

	Introduction
	Problem Statement
	Neural Motion Fields
	Learning from Grasp Trajectories
	Generating Grasp Motion

	Experiments
	Experimental Setup
	Evaluation on Grasping
	Ablation Study

	Conclusions and Future Work

